Cho a,b,c > 0 ; a+b+c = 1 . Chứng minh rằng :
( a + b )4 + ( b + c )4 + ( c + a )4 ≥ 16/27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi v là vận tốc của ca nô so với dòng nước, v vận tốc của nước so với bờ, v là vận tốc của ca nô so với bờ: Khi xuôi dòng: v = v + v Khi ngược dòng : v' = v – v Giả sử B là vị trí ca nô bắt đầu đi ngược, ta có: AB = (v + v ) T Khi ca nô ở B giả sử chiếc bè ở C thì: AC = v T Ca nô gặp bè đi ngược lại ở D thì: l = AB – BD → l = (v + v ) T – (v – v )t (1) l = AC + CD → l = v T + v t (2) Từ (1) và (2) ta có : (v + v )T – (v – v ) t = v T + v t → t = T (3) Thay (3) vào (2), ta có : l =2 v T → v = l/2T Thay số: v = 6/2,1 = 3 km/h
Một cách khác mà hôm nay ngủ dạy lại nghĩ ra :))
Áp dụng liên tiếp BĐT Svacxo cho 3 các số dương ta được :
\(\left(a+b\right)^4+\left(b+c\right)^4+\left(c+a\right)^4\)
\(=\frac{\left(a+b\right)^4}{1}+\frac{\left(b+c\right)^4}{1}+\frac{\left(c+a\right)^4}{1}\ge\frac{\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]^2}{1+1+1}\)
\(=\frac{\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]^2}{3}=\frac{\left[\frac{\left(a+b\right)^2}{1}+\frac{\left(b+c\right)^2}{1}+\frac{\left(c+a\right)^2}{1}\right]^2}{3}\)
\(\ge\frac{\left[\frac{\left(a+b+b+c+c+a\right)^2}{3}\right]^2}{3}=\frac{\left(\frac{2^2}{3}\right)^2}{3}=\frac{16}{27}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta đi chứng minh BĐT : \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
BĐT trên tương đương : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( Đúng )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
+) Ta xét : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\) (*)
Lại có : \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Nên từ (*) suy ra \(x^4+y^4+z^4\ge\frac{\left(\frac{\left(x+y+z\right)^2}{3}\right)^2}{3}=\frac{\left(x+y+z\right)^4}{27}\)
Áp dụng vào bài toán với \(\hept{\begin{cases}x=a+b\\y=b+c\\z=c+a\end{cases}}\) ta có :
\(\left(a+b\right)^4+\left(b+c\right)^4+\left(c+a\right)^4\ge\frac{\left(a+b+b+c+c+a\right)^4}{27}=\frac{2^4}{27}=\frac{16}{27}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy BĐT được chứng minh !
.