K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

Đề bài đâu bn ơi 

Nếu rút gọn thì mình làm cho

Ta có: \(P=\left(\frac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\frac{1-\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\)         (    ĐKXĐ: \(x\ge1\))

    \(\Leftrightarrow P=\left(\frac{1-x}{\sqrt{x}}\right):\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)+\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}+1\right)}\right)\)

    \(\Leftrightarrow P=\frac{1-x}{\sqrt{x}}.\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{1-x+\sqrt{x}-1}\)

    \(\Leftrightarrow P=\left(1-x\right).\frac{\sqrt{x}+1}{\sqrt{x}-x}\)

    \(\Leftrightarrow P=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right).\frac{\sqrt{x}+1}{\sqrt{x}.\left(1-\sqrt{x}\right)}\)

   \(\Leftrightarrow P=\frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}}\)

   \(\Leftrightarrow P=\frac{x+2\sqrt{x}+1}{\sqrt{x}}\)

31 tháng 8 2020

P=\(\frac{1-x}{\sqrt{x}}:\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

P=\(\frac{1-x}{\sqrt{x}}:\frac{1-x+x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

P=\(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-\sqrt{x}}\)

P=\(\left(\sqrt{x}+1\right)^2\)

P=\(x+2\sqrt{x}+1\)

31 tháng 8 2020

1. \(x^3-6x^2+10x-4=0\)

<=> \(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

<=>  \(\left(x-2\right)\left(x^2-4x+2\right)=0\)

<=> \(\orbr{\begin{cases}x=2\\x^2-4x+2=0\left(1\right)\end{cases}}\)

Giải pt (1): \(\Delta=\left(-4\right)^2-4.2=8>0\)

=> pt (1) có 2 nghiệm: \(x_1=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)

\(x_2=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)

31 tháng 8 2020

1) Ta có: \(x^3-6x^2+10x-4=0\)

       \(\Leftrightarrow\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

       \(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-2\right)=0\)

       \(\Leftrightarrow\left(x^2-4x+2\right)\left(x-2\right)=0\)

   + \(x-2=0\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)

   + \(x^2-4x+2=0\)\(\Leftrightarrow\)\(\left(x^2-4x+4\right)-2=0\)

                                             \(\Leftrightarrow\)\(\left(x-2\right)^2=2\)

                                             \(\Leftrightarrow\)\(x-2=\pm\sqrt{2}\)

                                             \(\Leftrightarrow\)\(\orbr{\begin{cases}x=2+\sqrt{2}\approx3,4142\left(TM\right)\\x=2-\sqrt{2}\approx0,5858\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,5858;2;3,4142\right\}\)

1 tháng 9 2020

\(ĐKXD:x\ge0,y\ge1\)

Ta có : \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)

\(\Leftrightarrow x-4\sqrt{x}+y-6\sqrt{y-1}+12=0\)

\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\left(\sqrt{y-1}-3\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{y-1}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=10\end{cases}}\) ( Thỏa mãn ĐK )

Vậy phương trình đã cho có nghiệm \(\left(x,y\right)=\left(4,10\right)\)

31 tháng 8 2020

Gọi a ( sản phẩm ) là số sản phẩm tổ 1 phải làm theo kế hoạch

Điều kiện : 0 < x < 800 , x \(\varepsilon\)Z

800 - x là số sản phẩm tổ 2 phải làm theo kế hoạch

0,1 x là số sản phẩm tổ 1 làm thêm được

0,2 ( 800 - x ) là số sản phẩm tổ 2 làm thêm được

Vì cả 2 tổ làm thêm được 110 ( 910 - 800 = 110 ) nên ta có :

0,1 x + 0,2 ( 800 - x ) = 110

=> 0,1 x - 160 - 0,2x = 110

=> 0,1 x = 50

=> x = 500 ( tmđk )

Vậy theo kế hoạch tổ 1 phải làm 500 sản phẩm

Tổ 2 phải làm 300 sản phẩm ( 800 - 500 = 300 )

31 tháng 8 2020

Gọi số sản phẩm tổ 1 làm là x

       số sản phẩm tổ 2 làm là y ( x, y thuộc N* ; x, y < 800 ) 

Theo đề bài ta có :

x + y = 800 ( 1 )

( x + 10%x ) + ( y + 20%y ) = 910

<=> ( x + 1/10x ) + ( y + 1/5y ) = 910

<=> x( 1 + 1/10 ) + y( 1 +1/5 ) = 910

<=> 11/10x + 6/5y = 910 ( 2 )

Từ (1) và (2) => Ta có hệ phương trình :

\(\hept{\begin{cases}x+y=800\\\frac{11}{10}x+\frac{6}{5}y=910\end{cases}}\)

Nhân 11/10 vào từng vế của (1)

\(\Rightarrow\hept{\begin{cases}\frac{11}{10}x+\frac{11}{10}y=880\left(3\right)\\\frac{11}{10}x+\frac{6}{5}y=910\end{cases}}\)

Lấy (3) trừ (2) theo vế 

\(\Rightarrow-\frac{1}{10}y=-30\Rightarrow y=300\)

Thế y = 300 vào (1)

\(\Rightarrow x+300=800\Rightarrow x=500\)

Cả hai giá trị đều tmđk

Vậy : Tổ 1 làm được 500 sản phẩm

         Tổ 2 làm được 300 sản phẩm

31 tháng 8 2020

Sử dụng bất đẳng thức AM - GM ta dễ thấy:

\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)

\(\ge2\sqrt{\left(a-1+2\sqrt{a-2}\right)\left(a-1-2\sqrt{a-2}\right)}\)

\(=2\sqrt{\left(a-1\right)^2-4\left(a-2\right)}=2\sqrt{a^2-6a+9}=2\sqrt{\left(a-3\right)^2}\ge2\)( vì a khác 3 ) 

Hoặc cách khác như thế này:

\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)

\(=\sqrt{\left[a-2+2\sqrt{a+2}+1\right]}+\sqrt{\left[a-2-2\sqrt{a-2}+1\right]}\)

\(=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)

\(=\left|\sqrt{a-2}+1\right|+\left|\sqrt{a-2}-1\right|\)

\(=\left|\sqrt{a-2}+1\right|+\left|1-\sqrt{a-2}\right|\ge\left|\sqrt{a-2}+1+1-\sqrt{a-2}\right|=2\)

Đẳng thức tự tìm nha

1 tháng 9 2020

\(\orbr{\begin{cases}x=y=\pm1\\x=y=\pm2\end{cases}}\)

\(\text{Cách giải = ko biết :))}\)

31 tháng 8 2020

ĐKXĐ: x>=1

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)

Ta có \(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)

Dấu "=" xảy ra khi \(\left(\sqrt{x-1}+1\right)\left(1-\sqrt{x-1}\right)\ge0\)

<=> x=<2. Kết hợp với ĐKXĐ => 1=<x=<2