Rút gọn :
( \(2-\sqrt{3}\)) . (\(\sqrt{6}+\sqrt{2}\)) . ( \(\sqrt{2+\sqrt{3}}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AB/AC=3/4 => AB/3=AC/4
=>. Đặt AB/3=AC/4=k
=> AB=3k ; AC=4k
Vì tg ABC vuông tại A
Áp dụng định lý Py-ta-go vào tg vuông ABC ta có:
=> AB^2 + AC^2 = BC^2
=> (3k)^2 + (4k)^2 = 15^2
=> 9k^2 + 16k^2 = 225
=> 25k^2 = 225
=> k^2=9 => k=3
=> AB=3k=3.3=9 cm
AC=4k=4.3=12 cm
Bài 1:
a) \(=5.|2a|-5a^2\)
b) \(=7\left(a-1\right)+5a=12a-7\)
c) \(|a-2|-5\sqrt{a+2}\)
Bài 2:
a) \(=3-\sqrt{2}+5-\sqrt{2}=8-2\sqrt{2}\)
b) \(=3+\sqrt{2}-\left(3-\sqrt{2}\right)\)
\(=2\sqrt{2}\)
c) \(=6-\sqrt{5}-\left(6+\sqrt{5}\right)\)
\(=-2\sqrt{5}\)
a) \(5\sqrt{4a^2}-5a^2\)
\(=5.|2a|-5a^2\)
b) \(7\sqrt{\left(a-1\right)^2}+5a\)
\(=7\left(a-1\right)+5a\)
\(=12a-7\)
c) \(\sqrt{\left(2-a\right)^2}-5\sqrt{a+2}\)
\(=|a-2|-5\sqrt{a+2}\)
bài 2:
a)\(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-5\right)^2}\)
\(=3-\sqrt{2}+5-\sqrt{2}\)
\(=8-2\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=3+\sqrt{2}-\left(3-\sqrt{2}\right)\)
\(=2\sqrt{2}\)
c)\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}\)
\(=6-\sqrt{5}-\left(6+\sqrt{5}\right)\)
\(=-2\sqrt{5}\)
Ta có: \(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)^2\times\frac{x^2-1}{2}-\sqrt{1-x^2}\) \(\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x-1}.\sqrt{x+1}}\right)^2\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(\Leftrightarrow A=\frac{x+1+x-1+2\sqrt{x^2-1}}{x^2-1}\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(\Leftrightarrow A=\frac{2x+2\sqrt{x^2-1}}{2}-\sqrt{1-x^2}\)
\(\Leftrightarrow A=x+\sqrt{1-x^2}-\sqrt{1-x^2}\)
\(\Leftrightarrow A=x\)
Học tốt
ĐKXĐ : ...............
\(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)^2\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\right)^2\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(A=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{x^2-1}\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(A=\frac{x+1+2\sqrt{x^2-1}+x-1}{2}-\sqrt{1-x^2}\)
\(A=\frac{2x+2\sqrt{x^2-1}-2\sqrt{1-x^2}}{2}\)
\(A=\frac{2x+2\sqrt{x^2-1}+2\sqrt{x^2-1}}{2}\)
\(A=\frac{2x+4\sqrt{x^2-1}}{2}\)
\(A=x+2\sqrt{x^2-1}\)
\(\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)
<=> \(xy+\sqrt{x^2+1}\sqrt{y^2+1}-1=-x\sqrt{x^2+1}-y\sqrt{y^2+1}\)--->Bình phương 2 vế:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+1+2xy\sqrt{x^2+1}\sqrt{y^2+1}-2xy-2\sqrt{x^2+1}\sqrt{y^2+1}=\)
\(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}\)
<=>\(2\left(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\right)=\left(x^2-y^2\right)^2\ge0\)=>\(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\ge0\)
<=>\(1-xy\ge\sqrt{x^2+1}\sqrt{y^2+1}>0\)---> Bình phương 2 vế:
\(1+x^2y^2-2xy\ge\left(x^2+1\right)\left(y^2+1\right)\)<=>\(0\ge\left(x+y\right)^2\ge0\)<=>\(x+y=0\Leftrightarrow x=-y\Rightarrow x^2=y^2\)
--> Thay vào A---> \(A=\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)
C D B A H N M
a) Kẻ CH vuông góc với AB ( H thuộc AB )
Ta có : \(BH=\frac{AB-CD}{2}=\frac{30-10}{2}=10\left(cm\right)\)
Ta lại có :
\(\cos\widehat{B}=\frac{BH}{BC}\)
\(\Rightarrow BC=\frac{10}{\cos60^o}\)
Vì cos 60o = \(\frac{1}{2}\)
\(\Rightarrow BC=10.2=20\left(cm\right)\)
b) Vì ABCD là hình thang cân
M , N lần lượt là trung điểm của AB , Cd
=>MN vuông góc với CD và AB
=> MN = CH
Theo định lí py-ta-go ta có : \(CH=\sqrt{BC^2-BH^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)
=> MN = \(10\sqrt{3}\)
a) Xét tam giác ABC vuông tại A dường cao AH: \(AB^2=BH.BC=BH\left(BH+HC\right)\Leftrightarrow6^2=BH^2+6,4BH\Leftrightarrow BH=3,6cm\) (Loại nghiệm âm vì BH>0)
b) Xét tam giác ABC cuông tại A đường cao AH:
\(AC^2=CH.CB=CH\left(CH+BH\right)\Leftrightarrow AC=\sqrt{6,4\left(6,4+3,6\right)}=8cm\)
Đề hơi lag rồi bạn oi, Vì vế phải toàn căn nên sẽ không âm, khi đó vế trái ko âm, khi đó x>5/2 mà như vậy thì \(\sqrt{2-x}\)sẽ không xác định ---> fail
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\left(\sqrt{2+\sqrt{3}}\right)\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2\left(2+\sqrt{3}\right)}\)
\(=\left(2\sqrt{3}+2-3-\sqrt{3}\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{3+2\sqrt{3}+1}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)|\sqrt{3}+1|\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}\right)^2-1^2\)
\(=3-1\)
\(=2\)