Gpt \(\left(4x+1\right)\sqrt{x^2+1}=2\left(x^2+1\right)+2x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
C O B A N M
a) Ta có:
Góc NOC = 180 độ - góc MON - góc MOB
Góc NOC = 180 độ - góc MBO - góc MOB
Góc NOC = góc BMO
Xét tam giác MBO và tam giác OCN
Góc MBO = góc OCN = 60 độ
Góc BMO = góc NOC
=> Tam giác MBO ~ tam giác OCN (g-g)
=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)
b) Do O là trung điểm BC => OC = BO
\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)
\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)
\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)
Xét tam giác OBM và tam giác NOM
Góc OBM = góc NOM = 60 độ
\(\frac{MB}{MO}=\frac{OB}{NO}\)
=> Tam giác OBM ~ tam giác NOM (c-g-c)
=> Góc OMB = góc OMN
=> MO là tia phân giác góc BMN
Ta có
\(8^2=64\equiv5\left(mod59\right)\Rightarrow\)\(8^{2n+1}\equiv5^n.8\left(mod59\right)\left(1\right)\)
\(5\equiv5\left(mod59\right)\Rightarrow\)\(5^{n+2}\equiv5^n.5^2\left(mod59\right)\left(2\right)\)
\(26\equiv26\left(mod59\right)\Rightarrow\)\(26.5^n\equiv26.5^n\left(mod59\right)\left(3\right)\)
Từ (1);(2);(3) \(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv5^n.5^2+26.5^n+5^n.8\left(mod59\right)\)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv5^n.\left(5^2+26+8\right)\left(mod59\right)\)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv5^n.59\left(mod59\right)\equiv0\left(mod59\right)\)
Vậy \(5^{n+2}+26.5^n+8^{2n+1}⋮59\left(đpcm\right)\)
Chúc Hok tốt !!!!!!!!!!!!!!!!!
Bài 1.
\(B=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\div\frac{x}{x-\sqrt{x}}\)với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
a) \(B=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\left(\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\left(\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)
\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{x}{x-\sqrt{x}}\)
\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x}\)
\(B=\frac{4\sqrt{x}\cdot\sqrt{x}}{\left(\sqrt{x}+1\right)x}=\frac{4x}{\left(\sqrt{x}+1\right)x}=\frac{4}{\sqrt{x}+1}\)
b) Để B > 1
=> \(\frac{4}{\sqrt{x}+1}>0\)( với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\))
Vì 4 > 0
=> \(\sqrt{x}+1>0\)
<=> \(\sqrt{x}>-1\)( luôn luôn đúng \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)) ( theo ĐKXĐ )
Vậy \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)thì B > 1
Chưa chắc lắm ... Còn câu 2 thì tí nữa mình làm cho
Bài 2.
\(A=2\sqrt{5}-1\)
\(B=\frac{2}{x-1}\cdot\sqrt{\frac{x^2-2x+1}{4x^2}}\)( x > 0 )
a) \(B=\frac{2}{x-1}\cdot\frac{\sqrt{x^2-2x+1}}{\sqrt{4x^2}}\)
\(B=\frac{2}{x-1}\cdot\frac{\sqrt{\left(x-1\right)^2}}{\sqrt{\left(2x\right)^2}}\)
\(B=\frac{2}{x-1}\cdot\frac{\left|x-1\right|}{\left|2x\right|}\)
\(B=\frac{2}{x-1}\cdot\frac{x-1}{2x}=\frac{1}{x}\)( vì x > 0 )
b) Để A + B = 0
=> \(\left(2\sqrt{5}-1\right)+\frac{1}{x}=0\)( ĐKXĐ : \(x\ne0\))
<=> \(\frac{1}{x}=-\left(2\sqrt{5}-1\right)\)
<=> \(\frac{1}{x}=1-2\sqrt{5}\)
<=> \(x\times\left(1-2\sqrt{5}\right)=1\)
<=> \(x=\frac{1}{1-2\sqrt{5}}\)( tmđk )
Vậy \(x=\frac{1}{1-2\sqrt{5}}\)
Tìm miền xác định phải không
a)
\(1-\sqrt{2x-x^2}\)
a xác định \(\Leftrightarrow2x-x^2\ge0\)
\(0\le x\le2\)
b)
\(\sqrt{-4x^2+4x-1}\)
b xác định
\(\Leftrightarrow-4x^2+4x-1\ge0\)
\(-\left(4x^2-4x+1\right)\ge0\)
\(4x^2-4x+1\le0\)
\(\left(2x-1\right)^2\le0\)
2x - 1 = 0
x = 1/2
c)
\(\frac{x}{\sqrt{5x^2-3}}\)
c xác định
\(\Leftrightarrow5x^2-3>0\)
\(5x^2>3\)
\(x^2>\frac{3}{5}\)
\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\)
d)
d xác định
\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\)
\(x-\sqrt{2x-1}>0\)
\(x>\sqrt{2x-1}\)
\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\)
e)
e xác định
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) )
\(x< -\frac{2}{3}\)
f)
f xác định
\(\Leftrightarrow x^2+x-2>0\)
\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)