K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)

18 tháng 9 2020

x2 + 4y2 + z2 - 2x + 8y - 6z + 15

= ( x2 - 2x + 1 ) + ( 4y2 - 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + 4( y2 - 2y + 1 ) + ( z - 3 )2 + 1

= ( x - 1 ) + 4( y - 1 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x, y, z

Vậy không tồn tại giá trị x, y, z thỏa mãn đẳng thức x2 + 4y2 + z2 - 2x + 8y - 6z + 15 ( đpcm )

18 tháng 9 2020

B = sin^2 1 + sin^2 89 + sin^2 2 + sin^2 88 + ... + sin^2 45 

= sin^2 1 + cos^2 1 + sin^2 2 + cos^2 2 + ... + sin^2 45 

= 1 + 1 + ... + sin^2 45 

= 44 + 1/2 

= 89/2

18 tháng 9 2020

\(ĐK:x\ne-2\)

\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\Leftrightarrow x^2-\frac{4x^2}{x+2}+\frac{4x^2}{\left(x+2\right)^2}=12-\frac{4x^2}{x+2}\)\(\Leftrightarrow\left(x-\frac{2x}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\Leftrightarrow\left(\frac{x^2}{x+2}\right)^2+\frac{4x^2}{x+2}-12=0\)

Đặt \(\frac{x^2}{x+2}=t\)thì phương trình trở thành \(t^2+4t-12=0\Leftrightarrow\left(t+6\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=-6\\t=2\end{cases}}\)

Th1: \(\frac{x^2}{x+2}=-6\Leftrightarrow x^2+6x+12=0\Leftrightarrow\left(x+3\right)^2+3=0\)(vô nghiệm)

Th2: \(\frac{x^2}{x+2}=2\Leftrightarrow x^2-2x-4=0\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)

Vậy phương trình có 2 nghiệm \(\left\{1+\sqrt{5};1-\sqrt{5}\right\}\)

18 tháng 9 2020

ĐKXĐ: x khác -2

\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\) <=> \(x^2+\frac{4x^2}{x^2+4x+4}=12\)

Nếu x = 0 => pt trở thành: 0 = 12 (vô lí)

=> x = 0 không phải là nghiệm của pt

Nếu x khác 0, chia cả tử và mẫu cho x2

\(1+\frac{4}{1+\frac{4}{x}+\frac{4}{x^2}}=12\)

<=> \(\frac{4}{1+\frac{4}{x}+\frac{4}{x^2}}=11\)

<=> \(1+\frac{4}{x}+\frac{4}{x^2}=\frac{4}{11}\)

<=> \(\left(1+\frac{2}{x^2}\right)^2=\frac{4}{11}\)

<=> \(\orbr{\begin{cases}1+\frac{2}{x^2}=\frac{2}{\sqrt{11}}\\1+\frac{2}{x^2}=-\frac{2}{\sqrt{11}}\end{cases}}\)

<=> \(\orbr{\begin{cases}\frac{2}{x^2}=\frac{-11+2\sqrt{11}}{11}\\\frac{2}{x^2}=\frac{-11-2\sqrt{11}}{11}\end{cases}}\) (loại vì 2/x2 > 0 với mọi x)

=> pt vô nghiệm 

\(\frac{11}{4-\sqrt{5}}+\frac{4}{3-\sqrt{5}}-\frac{19}{\sqrt{21+4\sqrt{5}}}=\frac{11\left(4+\sqrt{5}\right)}{16-5}+\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{19}{\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1}}\)

\(=4+\sqrt{5}+3+\sqrt{5}-\frac{19}{\sqrt{\left(2\sqrt{5}+1\right)^2}}=7+2\sqrt{5}-\frac{19}{2\sqrt{5}+1}\)

\(=7+2\sqrt{5}-\frac{19\left(2\sqrt{5}-1\right)}{20-1}=7+2\sqrt{5}-\left(2\sqrt{5}-1\right)=8\)

18 tháng 9 2020

\(\sqrt{6-3\sqrt{3}}-\sqrt{6+3\sqrt{3}}+\frac{4-\sqrt{12}}{2-\sqrt{3}}\)

\(=\sqrt{\frac{12-6\sqrt{3}}{2}}-\sqrt{\frac{12+6\sqrt{3}}{2}}+\frac{4-2\sqrt{3}}{2-\sqrt{3}}\)

\(=\sqrt{\frac{9-6\sqrt{3}+3}{2}}-\sqrt{\frac{9+6\sqrt{3}+3}{2}}+\frac{2\left(2-\sqrt{3}\right)}{2-\sqrt{3}}\)

\(=\frac{\sqrt{\left(3-\sqrt{3}\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(3+\sqrt{3}\right)^2}}{\sqrt{2}}+2\)

\(=\frac{3-\sqrt{3}-3-\sqrt{3}}{\sqrt{2}}+2\)

\(=\frac{-2\sqrt{3}}{\sqrt{2}}+2=-\sqrt{2}.\sqrt{3}+2=2-\sqrt{6}\)

\(x=\sqrt[3]{4+\sqrt{15}}-\sqrt[3]{4-\sqrt{15}}\)

\(\Rightarrow x^3=4+\sqrt{15}-\left(4-\sqrt{15}\right)-3\sqrt[3]{4+\sqrt{15}}.\sqrt[3]{4-\sqrt{15}}\left(\sqrt[3]{4+\sqrt{15}}-\sqrt[3]{4-\sqrt{15}}\right)\)

\(\Leftrightarrow x^3=2\sqrt{15}-3\sqrt[3]{4^2-\left(\sqrt{15}\right)^2}.x\)

\(\Leftrightarrow x^3=2\sqrt{15}-3x\Leftrightarrow x^3+3x=2\sqrt{15}\)