Cho: \(\frac{cy-bz}{x}\)=\(\frac{az-cx}{y}\)=\(\frac{bx-ay}{z}\)
Chứng minh rằng: \(\frac{a}{x}\)=\(\frac{b}{y}\)=\(\frac{c}{z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH 1 : \(x + 3/7 = 0\)
\(x = 0 - 3/7\)
\(x = -3/7\)
TH 2 : \(x-2/5=0\)
\(x=0+2/5\)
\(x=2/5\)
\(\left(x-\frac{2}{5}\right)\left(x+\frac{3}{7}\right)=0\)
\(\orbr{\begin{cases}x-\frac{2}{5}=0\\x+\frac{3}{7}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{3}{7}\end{cases}}\)
( 2x +1 ) 4 = 81
= ( 2x + 1 ) 4 = 34
= 2x + 1 = 3
= 2x = 2
= x = 1
HT
\(\left(2x-1\right)^4=81\)
Đặt \(\left(2x-1\right)^2=t;Đk:t\ge0\)
\(t^2=81\Rightarrow t=9\)
\(\left(2x-1\right)^2=9\Rightarrow2x-1=\pm3\)
\(2x-1=3\Rightarrow x=2\)
\(2x-1=-3\Rightarrow x=-1\)
\(x=\frac{4^2.4^3}{2^{10}}=\frac{4^5}{2^{10}}=\frac{\left(2^2\right)^5}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
TL
c2 = \(\frac{4^2.4^3}{2^{10}}\)=\(\frac{2^4.2^6}{2^{10}}\)= 1
HT
\(\frac{x}{3}\)=\(\frac{y}{4}\)=>x=\(\frac{3}{4}\)y
\(\frac{y}{3}\)=\(\frac{z}{5}\)=> z=\(\frac{5}{3}\)y
Ta có: 2x -3y+z=6
=>2.\(\frac{3}{4}\)y-3y+\(\frac{5}{3}\)y=6
=>\(\frac{1}{6}\)y=6
=> y=36
mà x= 3/4y=> x=27
z=5/3y=> z=60
x = 27
y = 36
z = 60
Theo giả thiết ta có:
Khi đó ta có:
\(\frac{x}{9}\)= \(\frac{y}{12}\)=\(\frac{z}{20}\)=\(\frac{2x}{18}\)= \(\frac{3y}{36}\)= \(\frac{z}{20}\)= \(\frac{2x-3y+z}{18-36+20}\)=\(\frac{6}{2}\)= 3 ( tính chất tỉ lệ thức )
Vậy x = 3.9 = 27; y = 3.12 = 36 ; z = 3.20 = 60
HT
\(\frac{x}{y}\)=\(\frac{7}{13}\)=> x=\(\frac{7}{13}\)y
Ta có : -x=y-40
=> x+y=40
Thay x =\(\frac{7}{13}\)y
=> \(\frac{7}{13}\)y+y=40
=>\(\frac{20}{13}\)y=40
=> y= 26
Vậy y =26
x=\(\frac{7}{13}\)y=> x=14
\(x=-y+40\)
\(\frac{x}{y}=\frac{7}{13}\Rightarrow\frac{-y+40}{y}=\frac{7}{13}\Rightarrow-13y+520=7y\)
\(\Rightarrow20y=520\Rightarrow y=260\Rightarrow x=-220\)
a/ \(\left(3x-1\right)^6=\left(3x-1\right)^4\Rightarrow\left(3x-1\right)=\left\{-1;0;1\right\}\)
\(\Rightarrow x=\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)
b/
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=1\)
\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)
Tương tự
\(b+c=2a;a+c=2b\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=8\)
P=|x−2016|+|x−2018|+|x−2020|P=|x-2016|+|x-2018|+|x-2020|
⇔P=|x−2016|+|2020−x|+|x−2018|⇔P=|x-2016|+|2020-x|+|x-2018|
⇔P≥|x−2016+2020−x|+0⇔P≥|x-2016+2020-x|+0
⇔P≥4036⇔P≥4036
Vậy Pmin=4036Pmin=4036 khi {(x−2016)(2020−x)≥0x−2018=0{(x−2016)(2020−x)≥0x−2018=0
⇔x=2018
Ta có:
\(\frac{cy-bz}{x}=\frac{az-cx}{y}=\frac{bx-ay}{z}=\frac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\Rightarrow\frac{cy-bz}{x}=0\Rightarrow cy=bz\Rightarrow\frac{b}{y}=\frac{c}{z}\left(1\right)\)
\(\Rightarrow\frac{az-cx}{y}=0\Rightarrow az=cx\Rightarrow\frac{a}{x}=\frac{c}{z}\left(2\right)\)
Từ ( 1 ) và ( 2 ), suy ra: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)