1. Cho biểu thức:
\(A=\frac{x^2+2x+3}{\left(x+2\right)^2}\)
Tìm GTNN của biểu thức A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge0;x\ne1\)
Ta có: \(P=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\text{]}\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{x+\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\text{]}\frac{\left(x-1\right)^2}{2}\)
\(=\left(\sqrt{x}-2-\frac{x+\sqrt{x}-2}{\sqrt{x}+1}\right)\frac{x-1}{2}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(x+\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2}\)
\(-2\sqrt{x}.\frac{\sqrt{x}-1}{2}\)\(=\sqrt{x}-x\)
Ta có \(x^2-x-1=0\Rightarrow x^2-x=1\Rightarrow\left(x^2-x\right)^3=1\)
\(\Rightarrow x^6-3x^5+3x^4-x^3=1\)
Mặt khác \(x^2-x-1-0\Rightarrow x^2=x+1\)
\(\Rightarrow x^6=\left(x+1\right)^3=x^3+2=3x^2+3x+1\)
\(\Rightarrow P=\frac{1+2017}{1+2017}=1\)
\(cos^4x-sin^4x=2cos^2x-1\) ( 1 )
\(\left(cos^2x\right)^2-\left(sin^2x\right)^2=2cos^2x-1\)
\(\left(cos^2x-sin^2x\right)\left(cosx^2+sin^2x\right)=2cos^2x-1\)
\(\left(cos^2x-sin^2x\right)\cdot1=2cos^2x-1\)
\(cos^2x-sin^2x=2cos^2x-1\)
\(cosx^2-\left(1-cos^2x\right)=2cos^2x-1\)
\(cos^2x-1+cos^2x=2cos^2x-1\)
\(2cos^2x-1=2cos^2x-1\)
\(0=0\left(llđ\right)\) ( tới hàng trên luôn luôn đúng cũng được chứ không cần tới hàng này nha )
Vậy ( 1 ) đúng ( đpcm )
\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)
\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)
\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)
Dấu '' ='' xảy ra khi và chỉ khi x=1
=> Min A =2/3 khi x=1