K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2020

Hàm số trên nghịch biến 

\(\Leftrightarrow4-\sqrt{m-1}< 0\) 

\(-\sqrt{m-1}< 0-4\) 

\(-\sqrt{m-1}< -4\) 

\(\sqrt{m-1}>4\) 

\(\hept{\begin{cases}4\ge0\left(llđ\right)\\m-1>4^2\end{cases}}\) 

\(m-1>16\) 

\(m>17\)

29 tháng 9 2020

BĐT đúng với n=2

giả sử BĐT đúng với n=k , tức là: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}< k\sqrt{\frac{k+1}{2}}\)

Ta phải chứng minh BĐT đúng vớới n=k+1:

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)

Ta thấy: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\)

Mà: \(k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)(*)

Thậy vậy: (*)\(\Leftrightarrow\sqrt{k+1}\left(\frac{k}{\sqrt{2}}+1\right)< \left(k+1\right)\sqrt{\frac{k+2}{2}}\Leftrightarrow\frac{k}{\sqrt{2}}+1< \sqrt{k+1}\sqrt{\frac{k+2}{2}}\)

\(\Leftrightarrow\frac{k+\sqrt{2}}{\sqrt{2}}< \sqrt{k+1}\frac{\sqrt{k+2}}{\sqrt{2}}\Leftrightarrow k^2+2\sqrt{2k}+2< k^2+3k+2\)(luôn đúng)

Suy ra: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)

hay \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...\sqrt{n}< n\sqrt{\frac{n+1}{2}}\)

1 tháng 10 2020

Mình cảm ơn bạn ạ!!

29 tháng 9 2020

Với  x<-3 ta có:

\(x+3+2\sqrt{x^2-9}=\sqrt{-\left(x+3\right)}.\sqrt{-\left(x+3\right)}+2\sqrt{-\left(x+3\right)}.\sqrt{3-x}\)

\(=\sqrt{-\left(x+3\right)}.\left(\sqrt{-\left(x+3\right)}+2\sqrt{3-x}\right)\)

\(6-2x+\sqrt{x^2-9}=\sqrt{3-x}\left(2\sqrt{3-x}+\sqrt{-\left(x+3\right)}\right)\)

Từ đó suy ra \(M=\frac{\sqrt{-\left(x+3\right)}}{\sqrt{3-x}}hayM=\sqrt{\frac{\left(x+3\right)}{\left(x-3\right)}}\)

29 tháng 9 2020

1) \(\sqrt{x^2-3}=x+1\)

ĐK : x ≥ -1

pt <=> x2 - 3 = x2 + 2x + 1 ( bình phương hai vế )

    <=> x2 - x2 - 2x = 1 + 3

    <=> -2x = 4

    <=> x = -2 ( ktm )

Vậy phương trình vô nghiệm

2) \(\sqrt{9x^2-5}=3x-1\)( mình nghĩ nên để đề như này vì như kia khai triển khó lắm ._. )

ĐK : x ≥ 1/3

pt <=> 9x2 - 5 = 9x2 - 6x + 1 ( bình phương hai vế )

    <=> 9x2 - 9x2 + 6x = 1 + 5

    <=> 6x = 6

    <=> x = 1 ( tm )

Vậy phương trình có nghiệm duy nhất là x = 1