K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)

\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\frac{\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\sqrt{3}-2-\sqrt{2}=-2\)

30 tháng 9 2020

dòng cuối là \(\sqrt{3}-2-\sqrt{3}=-2\)nhá

30 tháng 9 2020

Đặt \(x=a^3,y=b^3,z=c^3\Rightarrow\)a,b,c dương và abc=1

\(x+y+1=a^3+b^3+1=\left(a+b\right)\left(a^2+b^2-ab\right)+1\ge\left(a+b\right)ab+abc\)

\(\Rightarrow\frac{1}{x+y+1}=\frac{1}{a^3+b^3+1}\le\frac{1}{abc+ab\left(a+b\right)}=\frac{abc}{abc+ab\left(a+b\right)}=\frac{c}{a+b+c}\)

Tương tự \(\Rightarrow\frac{1}{y+z+1}\le\frac{a}{a+b+c};\frac{1}{x+z+1}\le\frac{b}{a+b+c}\)

\(\Rightarrow\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le\frac{c}{a+b+c}\frac{a}{a+b+c}\frac{b}{a+b+c}=1\)(đpcm)

30 tháng 9 2020

n Zn = m / M = 9,75 / 65 = 0,15 ( mol ) 

Zn + 2HCl --> ZnCl2 + H2 

1        2             1            1 

0,15    0,3         0,15       0,15    

m HCl = n * M = 0,3 * 36,5 = 10,95 ( g ) 

C% = mct * 100% / mdd 

--> mdd = mct * 100% / C% = 10,95 * 100 / 7,3 = 150 ( g) 

30 tháng 9 2020

k có số dương nào để tổng trên bằng 0

30 tháng 9 2020

Đặt \(N=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Rightarrow N\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=\sqrt{7}+1-\sqrt{7}+1=2\)

\(\Rightarrow N=\sqrt{2}\)

\(\Rightarrow M=N-\sqrt{8}=\sqrt{2}-\sqrt{8}\)

29 tháng 9 2020

\(y=\left(-m^2+4m-10\right)x+4\) 

\(a=-m^2+4m-10\) 

\(=-m^2+4m-4-6\) 

\(=-\left(m-2\right)^2-6\) 

Ta có 

\(\left(m-2\right)^2\ge0\forall m\) 

\(-\left(m-2\right)^2\le0\)   

\(-\left(m-2\right)^2-6\le-6\) 

Vậy a luôn âm 

Vậy hàm số luôn nghịch biến với mọi m                                      

29 tháng 9 2020

Dễ thấy \(\left(2m^2-4m+10\right)=2\left(m-1\right)^2+8>0\forall m\)

Vậy hàm số trên đồng biến với mọi m,