Chứng minh rằng : Với mọi hàm số sau :
y = ( 2 m\(^2\)- 4m + 10 ) .x + m - 2 đồng biến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số trên nghịch biến
\(\Leftrightarrow4-\sqrt{m-1}< 0\)
\(-\sqrt{m-1}< 0-4\)
\(-\sqrt{m-1}< -4\)
\(\sqrt{m-1}>4\)
\(\hept{\begin{cases}4\ge0\left(llđ\right)\\m-1>4^2\end{cases}}\)
\(m-1>16\)
\(m>17\)
BĐT đúng với n=2
giả sử BĐT đúng với n=k , tức là: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}< k\sqrt{\frac{k+1}{2}}\)
Ta phải chứng minh BĐT đúng vớới n=k+1:
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)
Ta thấy: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\)
Mà: \(k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)(*)
Thậy vậy: (*)\(\Leftrightarrow\sqrt{k+1}\left(\frac{k}{\sqrt{2}}+1\right)< \left(k+1\right)\sqrt{\frac{k+2}{2}}\Leftrightarrow\frac{k}{\sqrt{2}}+1< \sqrt{k+1}\sqrt{\frac{k+2}{2}}\)
\(\Leftrightarrow\frac{k+\sqrt{2}}{\sqrt{2}}< \sqrt{k+1}\frac{\sqrt{k+2}}{\sqrt{2}}\Leftrightarrow k^2+2\sqrt{2k}+2< k^2+3k+2\)(luôn đúng)
Suy ra: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)
hay \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...\sqrt{n}< n\sqrt{\frac{n+1}{2}}\)
Với x<-3 ta có:
\(x+3+2\sqrt{x^2-9}=\sqrt{-\left(x+3\right)}.\sqrt{-\left(x+3\right)}+2\sqrt{-\left(x+3\right)}.\sqrt{3-x}\)
\(=\sqrt{-\left(x+3\right)}.\left(\sqrt{-\left(x+3\right)}+2\sqrt{3-x}\right)\)
\(6-2x+\sqrt{x^2-9}=\sqrt{3-x}\left(2\sqrt{3-x}+\sqrt{-\left(x+3\right)}\right)\)
Từ đó suy ra \(M=\frac{\sqrt{-\left(x+3\right)}}{\sqrt{3-x}}hayM=\sqrt{\frac{\left(x+3\right)}{\left(x-3\right)}}\)
Dễ thấy \(\left(2m^2-4m+10\right)=2\left(m-1\right)^2+8>0\forall m\)
Vậy hàm số trên đồng biến với mọi m,