K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

\(\sqrt{n}-\sqrt{n-1}< \frac{1}{100}\Leftrightarrow\frac{1}{\sqrt{n}-\sqrt{n-1}}>100\Leftrightarrow\sqrt{n}+\sqrt{n-1}>100\left(1\right)\)

Đến đây có thể giải bpt(1) bằng cách chuyển vế \(\sqrt{n-1}>100-\sqrt{n}\), bình phương 2  vế và đưa về \(\sqrt{n}>50,005\). do đó \(n>2500,500025\). Do \(n\in N\)và nhỏ nhất nên n=2501

Cũng có thể ước lượng từ (1) để thấy \(\sqrt{n}\)vào khoảng 50. Với \(n\le2500\)thì \(\sqrt{n}+\sqrt{n-1}\le\sqrt{2500}+\sqrt{2499}< 100\)

Với n=2501 thì \(\sqrt{n}+\sqrt{n-1}=\sqrt{2501}+\sqrt{2500}>100\)

Ta chọn n=2501

2 tháng 10 2020

c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:

\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành : 

\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.

Xét \(a,b>0\). Theo BĐT  AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)

\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)

Vậy x=8,y=8 là nghiệm của pt

2 tháng 10 2020

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

\(\Rightarrow\sqrt{\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1}=1\)

2 tháng 10 2020

Phương trình tương đương với \(x^2+y^2=4x+2\left(1\right)\)

Ta có: \(x^2-4x-2=-y^2\le0\Rightarrow\left(x-\sqrt{6}-2\right)\le0\)

\(\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\)

\(\Leftrightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\left(2\right)\)

Từ 1 và 2 \(\Rightarrow10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\)

Nhận xét: bài toán áp dụng biến đổi tương đương 1 pt, giả bpt bậc 2.

* Biến đổi tương đương 1 pt:

\(x^2+y^2-4x-2=0\Leftrightarrow x^2+y^2=4x+2\left(1\right)\)

\(\Leftrightarrow x^2-4x-2=-y^2\left(2\right)\)

* BĐT: 

Ta có: \(y^2\ge0\Leftrightarrow-y^2\le0\)kết hợp với (2) ta có: \(x^2-4x-2\le0\)

* giải bpt bậc 2:

\(x^2-4x-2\le0\Leftrightarrow\left(x-\sqrt{6}-2\right)\left(x+\sqrt{6}-2\right)\le0\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\)

* Biến đổi tương đương bpt:

\(2-\sqrt{6}\le x\le2+\sqrt{6}\Leftrightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\)

Kết hợp với (1) ta có \(10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\left(\text{đ}pcm\right)\)

2 tháng 10 2020

Sửa đề bài ( thêm ) . Tìm tất cả các hàm \(f:ℝ\rightarrowℝ\)

2 tháng 10 2020

ĐK: \(x\ge\frac{1}{3}\)

Pt đã cho tương đương với \(\left(18x^2-2x-\frac{8}{3}\right)+9\left(\sqrt{x-\frac{1}{3}}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left(18x-8\right)\left(x+\frac{1}{3}\right)+9\frac{x-\frac{1}{3}-\frac{1}{9}}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}=0\)

\(\Leftrightarrow\left(x-\frac{4}{9}\right)\text{[}18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{2}}\text{]}=0\Rightarrow x=\frac{4}{9}\)

CM: Với \(x\ge\frac{1}{3}\Rightarrow18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}>0\)

Pt đã cho có nghiệm \(x=\frac{4}{9}\)