|x^2+x-2|+|x^2-1|=0
mn ơi!! giúp mk vs ạ :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(2x+3\ge0\Rightarrow x\ge\frac{-3}{2}\)
Pt \(\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\)\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2+3}-1\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}x+1=0\\\sqrt{2x+3}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\left(tm\text{đ}k\right)\\2x+3=1\end{cases}}}\)
Vậy x=-1 là nghiệm của pt.
\(\sqrt{n}-\sqrt{n-1}< \frac{1}{100}\Leftrightarrow\frac{1}{\sqrt{n}-\sqrt{n-1}}>100\Leftrightarrow\sqrt{n}+\sqrt{n-1}>100\left(1\right)\)
Đến đây có thể giải bpt(1) bằng cách chuyển vế \(\sqrt{n-1}>100-\sqrt{n}\), bình phương 2 vế và đưa về \(\sqrt{n}>50,005\). do đó \(n>2500,500025\). Do \(n\in N\)và nhỏ nhất nên n=2501
Cũng có thể ước lượng từ (1) để thấy \(\sqrt{n}\)vào khoảng 50. Với \(n\le2500\)thì \(\sqrt{n}+\sqrt{n-1}\le\sqrt{2500}+\sqrt{2499}< 100\)
Với n=2501 thì \(\sqrt{n}+\sqrt{n-1}=\sqrt{2501}+\sqrt{2500}>100\)
Ta chọn n=2501
c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:
\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành :
\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.
Xét \(a,b>0\). Theo BĐT AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)
\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)
Vậy x=8,y=8 là nghiệm của pt
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
\(\Rightarrow\sqrt{\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1}=1\)
Phương trình tương đương với \(x^2+y^2=4x+2\left(1\right)\)
Ta có: \(x^2-4x-2=-y^2\le0\Rightarrow\left(x-\sqrt{6}-2\right)\le0\)
\(\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\)
\(\Leftrightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\left(2\right)\)
Từ 1 và 2 \(\Rightarrow10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\)
Nhận xét: bài toán áp dụng biến đổi tương đương 1 pt, giả bpt bậc 2.
* Biến đổi tương đương 1 pt:
\(x^2+y^2-4x-2=0\Leftrightarrow x^2+y^2=4x+2\left(1\right)\)
\(\Leftrightarrow x^2-4x-2=-y^2\left(2\right)\)
* BĐT:
Ta có: \(y^2\ge0\Leftrightarrow-y^2\le0\)kết hợp với (2) ta có: \(x^2-4x-2\le0\)
* giải bpt bậc 2:
\(x^2-4x-2\le0\Leftrightarrow\left(x-\sqrt{6}-2\right)\left(x+\sqrt{6}-2\right)\le0\Leftrightarrow2-\sqrt{6}\le x\le2+\sqrt{6}\)
* Biến đổi tương đương bpt:
\(2-\sqrt{6}\le x\le2+\sqrt{6}\Leftrightarrow10-4\sqrt{6}\le4x+2\le10+4\sqrt{6}\)
Kết hợp với (1) ta có \(10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\left(\text{đ}pcm\right)\)
Sửa đề bài ( thêm ) . Tìm tất cả các hàm \(f:ℝ\rightarrowℝ\)
Ta có : \(\hept{\begin{cases}\left|x^2+x-2\right|\ge0\forall x\\\left|x^2-1\right|\ge0\forall x\end{cases}}\Rightarrow\left|x^2+x-2\right|+\left|x^2-1\right|\ge0\forall x\)
Đẳng thức |x2 + x - 2| + |x2 - 1| = 0 xảy ra
<=> \(\hept{\begin{cases}x^2+x-2=0\\x^2-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+2x-x-2=0\\x^2=1\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+2\right)\left(x-1\right)=0\\x^2=1\end{cases}}\)
+) Nếu : (x + 2)(x - 1) = 0
=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
+) Nếu x2 = 1
=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy x = 1