cho tam giác abc có 3 đường cao AD, BM,CN . Gọi H là trực tâm của tam giác abc . cmr : HD/AD+HM/BM+HN/CN= DB/DC.MC/MA.NA/NB
Ai giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{x^2y^2-x^2-y^2+1}{x^2y^2}=\frac{x^2y^2-x^2-y^2+\left(x+y\right)^2}{x^2y^2}=\frac{x^2y^2+2xy}{x^2y^2}\)\(=1+\frac{2}{xy}\)
Ta có BĐT: \(\left(x+y\right)^2\ge4xy;\forall x,y>0\)
Đẳng thức xảy ra khi và chỉ khi x=y.
\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)
Có: \(A=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=1+8=9\)
Vậy GTNN của A=9 khi x=y=1/2
\(AB+4=\left(11...1+4\right)\left(11...1+8\right)+4=\) (có n+1 chữ số 1)
\(=11...1^2+12x11...1+36=\left(11...1+2x6x11...1+6^2\right)=\)
\(=\left(11...1+6\right)^2=11...7^2\) (có n chữ số 1)
a) \(\left(\frac{\sqrt{9}}{2}+\frac{\sqrt{1}}{2}-\sqrt{2}\right)\sqrt{2}\)
\(=\frac{3\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-2\)
\(=\frac{4\sqrt{2}}{2}-2=2\sqrt{2}-2\)
b) \(\left(\frac{\sqrt{8}}{3}-\sqrt{24}+\frac{\sqrt{50}}{3}\right)\sqrt{6}\)
\(=\frac{4\sqrt{3}}{3}-12+\frac{10\sqrt{3}}{3}\)
\(=\frac{14\sqrt{3}}{3}-12\)
c) \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{1}\right)\) (đã sửa đề)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\sqrt{2}\)
\(=\left(3-1\right)\sqrt{2}\)
\(=2\sqrt{2}\)
d) \(\left(3\sqrt{2}+1\right)\left(\sqrt{3\sqrt{2}-1}\right)\)
\(=\sqrt{3\sqrt{2}+1}\cdot\left(\sqrt{3\sqrt{2}+1}\cdot\sqrt{3\sqrt{2}-1}\right)\)
\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{18-1}\)
\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{17}\)
...
\(cosB=\frac{AB}{BC}=\frac{AB}{12}=\frac{3}{5}\Rightarrow AB=\frac{36}{5}\)
Tam giác ABC vuông tại A nên theo định lý Py-ta-go, ta có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{12^2-\left(\frac{36}{5}\right)^2}=\frac{48}{5}\)
Ta có: \(cosB=\frac{3}{5}\)ta dùng máy tính bỏ túi tìm được \(\widehat{B}\approx53^0\), do đó \(\widehat{C}\approx90^0-53^0=37^0\)
Đặt 11...11 (n số 1) = t thì \(10^n=9t+1\)
S = 11...11 (2n số 1) - 88...88 (n số 8) + 1 = 11..11 (n số 1). 10n + 11...11 (n số 1) - 8t + 1 = t. (9t + 1) + t - 8t + 1 = 9t2 - 6t + 1 = (3t - 1)2 (là số chính phương)
Vậy S là số chính phương (đpcm)
Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1\)
\(=1\)
Ta có: \(\frac{HD}{AD}=\frac{S_{HDC}}{S_{ADC}}=\frac{S_{HDB}}{S_{ADB}}=\frac{S_{HDC}+S_{HDB}}{S_{ADC}+S_{ADB}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự: \(\frac{HM}{BM}=\frac{S_{AHC}}{S_{ABC}};\frac{HN}{CN}=\frac{S_{AHB}}{S_{ABC}}\)
Từ đó suy ra \(\frac{HD}{AD}+\frac{HM}{BM}+\frac{HN}{CN}=\frac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(1)
Dễ thấy các cặp tam giác: ∆ADB và ∆CNB, ∆ADC và BMC, ∆AMB và ∆ANC đồng dạng với nhau nên: \(\frac{DB}{DC}.\frac{MC}{MA}.\frac{NA}{NB}=\frac{DB}{ NB}.\frac{MC}{DC}.\frac{NA}{MA}=\frac{AB}{BC}.\frac{BC}{AC}.\frac{AC}{AB}=1\)(2)
Từ (1) và (2) suy ra \(\frac{HD}{AD}+\frac{HM}{BM}+\frac{HN}{CN}=\frac{DB}{DC}.\frac{MC}{MA}.\frac{NA}{NB}\)(đpcm)