K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố địnhb)Chứng minh: OB.OC=2Rc)Tìm giá trị lớn nhất...
Đọc tiếp

Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)

a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố định

b)Chứng minh: OB.OC=2R

c)Tìm giá trị lớn nhất của diện tích am giác OMN khi H thay đổi

Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)

a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố định

b)Chứng minh: OB.OC=2R

c)Tìm giá trị lớn nhất của diện tích am giác OMN khi H thay đổi

0
18 tháng 10 2020

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

18 tháng 10 2020

Ta có: 

\(B=x^2+4-x+\frac{1}{x^2-x+1}\)

\(B=\left(x^2-x+1+\frac{1}{x^2-x+1}\right)+3\)

Áp dụng BĐT Cauchy ta được:

\(B\ge2\sqrt{\left(x^2-x+1\right)\cdot\frac{1}{x^2-x+1}}+3=2\cdot1+3=5\)

Dấu "=" xảy ra khi: \(x^2-x+1=\frac{1}{x^2-x+1}\)

\(\Leftrightarrow\left(x^2-x+1\right)^2=1\) mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

\(\Rightarrow x^2-x+1=1\Leftrightarrow x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy Min(B) = 5 khi \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

18 tháng 10 2020

a) ĐK: \(x\ge1\)

\(\sqrt{x}-\sqrt{x+1}+\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{\sqrt{x^3-x}}{\sqrt{x-1}}\)

\(=\sqrt{x}-\sqrt{x-1}+\frac{\sqrt{x-1}+\sqrt{x}}{x-1-x}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}-\sqrt{x-1}-\sqrt{x-1}-\sqrt{x}+x\)

\(=x-2\sqrt{x-1}\)

\(=\left(x-1\right)-2\sqrt{x-1}+1\)'

\(=\left(\sqrt{x-1}-1\right)^2\)

b) \(P=1\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=1\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}-1=1\\\sqrt{x-1}-1=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy x=5,x=1

18 tháng 10 2020

\(ĐKXĐ:\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)

\(\left(\frac{\sqrt{a}-2}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-2}\right):\frac{1}{a-4}\)

\(=\left[\frac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right].\left(a-4\right)\)

\(=\frac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}.\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\)

\(=\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2\)

\(=\left(a-4\sqrt{a}+4\right)-\left(a+4\sqrt{a}+4\right)\)

\(=a-4\sqrt{a}+4-a-4\sqrt{a}-4=-8\sqrt{a}\)

18 tháng 10 2020

ĐK : \(\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)

\(=\left(\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right)\div\frac{1}{a-4}\)

\(=\left(\frac{a-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\frac{a+4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right)\div\frac{1}{a-4}\)

\(=\left(\frac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right)\div\frac{1}{a-4}\)

\(=\frac{-8\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\times\frac{a-4}{1}\)

\(=\frac{-8\sqrt{a}}{a-4}\times\frac{a-4}{1}=-8\sqrt{a}\)

18 tháng 10 2020

to bit ne no la 93 do ban tinh thu xem dung ko roi cho minh bit nha ok ban 

18 tháng 10 2020

Không viết lại đề

\(B=\left|2-x\right|+\left|3-y\right|+\left|x+y-2020\right|\ge\left|2-x+3-y+x+y-2020\right|=\left|-2015\right|=2015\)Còn lại tự làm nốt

18 tháng 10 2020

Uầy, Bunyakovsky phát ra luôn nè :))

Ta có:

 \(\left(x+3y+4z+t\right)^2\le\left(1^2+3^2+4^2+1^2\right)\left(x^2+y^2+z^2+t^2\right)=27\left(x^2+y^2+z^2+t^2\right)\)

Dấu "=" xảy ra khi: \(x=\frac{y}{3}=\frac{z}{4}=t\)

Đặt \(x=\frac{y}{3}=\frac{z}{4}=t=k\left(k\inℝ\right)\)

\(\Rightarrow\hept{\begin{cases}x=t=k\\y=3k\\z=4k\end{cases}}\) thay vào ta được: \(k^3+27k^3+64k^3+k^3=93\)

\(\Leftrightarrow93k^3=93\Rightarrow k^3=1\Rightarrow k=1\)

\(\Rightarrow\hept{\begin{cases}x=t=1\\y=3\\z=4\end{cases}}\)