Một chiếc máy bay bay lên với vận tốc 10km/phút. Đường bay tạo với phương nằm ngang một góc 30 độ. Hỏi sau bao nhiêu phút máy bay bay lên cao được 5km so với mặt đất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có p; q ; p -q ; p + q là các số nguyên tố
=> p > q
Th1: q > 2
=> p; q là số chẵn
=> p - q ; p + q là các số chẵn => loại
Th2: q = 2
Ta tìm p để p; p - 2 ; p + 2 là các số nguyên tố
+) Nếu p - 2 = 3 => p = 5 => p + 2 = 7 là các số nguyên tố => p = 5 thỏa mãn
+) Nếu p - 2 = 3k + 1 => p = 3 k + 3 không là số nguyên tố=> loại
+) Nếu p - 2 = 3k + 2 => p = 3k + 4 => p + 2 = 3k + 6 không là số nguyên tố => loại
Vậy p = 5; q = 2
Cauchy Schwarz dạng Engel là nhanh nhất !
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ca}+\frac{b^2}{ab+bc}+\frac{c^2}{ca+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2\cdot\frac{\left(a+b+c\right)^2}{3}}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c
Cách khác:
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{a}{b+c}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(\ge\left(a+b+c\right)\cdot\frac{9}{2\left(a+b+c\right)}-3\)
\(=\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c
Bài 1 :
+) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a) Ta có :
\(x=4-2\sqrt{3}\)
\(\Leftrightarrow x=3-2\sqrt{3}+1\)
\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ )
Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là :
\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)
b)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
Ta có :
\(P=A:B\)
\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)
c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)
Dấu bằng xảy ra
\(\Leftrightarrow-\sqrt{x}-3=0\)
\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )
Vậy không tìm được giá trị nào của x để P đạt GTNN