K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình:

ABC68HD

~~~

a/ A/dụng pitago vào tam giác ABC v tại A có:

BC2=AB2+AC2=62+82=100⇒BC=10(cm)BC2=AB2+AC2=62+82=100⇒BC=10(cm)

Áp dụng hệ thức lượng trong tam giác v ABC có:

+) AB2 = BC . BH => BH=AB2BC=3610=3,6(cm)BH=AB2BC=3610=3,6(cm)

=> HC = BC - BH = 10 - 3,6 = 6,4(cm)

+) AH2 = BH . HC = 3,6 . 6,4 = 23,04

=> AH = 4,8 (cm)

b/ Vì AD là p/g góc BAC

=> BDDC=ABAC⇒BDAB=DCAC=BD+DCAB+AC=BC6+8=106+8=57BDDC=ABAC⇒BDAB=DCAC=BD+DCAB+AC=BC6+8=106+8=57

=> ⎧⎩⎨⎪⎪⎪⎪BD=57⋅6=307(cm)DC=57⋅8=407(cm)

 Chúc bạn hok tốt ^^

By Ryu

xét △MIN và △QMN có

Iˆ=Mˆ(=900)I^=M^(=900)

NˆchungN^chung

=>△MIN ∼ △QMN (g.g)(đpcm)

b) vì MNPQ là hình chữ nhật

=> NM//PQ

=> N1ˆ=Q1ˆ(SLT)N1^=Q1^(SLT)

XÉT △MIN và △MPQ có

Iˆ=Pˆ(=900)I^=P^(=900)

N1ˆ=Q1ˆ(cmt)N1^=Q1^(cmt)

=> △MIN ∼ △MPQ (g.g)(đpcm)

c xét △MIQ và △ NMQ có

Iˆ=Mˆ(=900)I^=M^(=900)

QˆchungQ^chung

=> △MIQ ∼ △ NMQ (g.g)

=> MQQN=IQMQMQQN=IQMQ

=> MQ.MQ=QN.QI

=> MQ2=QN.QI(đpcm)

d>xét △MNQ có Mˆ=900M^=900 theo đl pi ta go ta có

QN2 =QM2+MN2

⇔ QN2=32+42

⇔ QN2=25

⇔ QN=5 (cm)

vì MNPQ là hình cữ nhật

=> QM=NP=3cm

vì △MIQ ∼ △ NMQ (theo c)

=> MINM=MQNQ=MI4=35MINM=MQNQ=MI4=35

=> MI= 4.35=2,4(cm)4.35=2,4(cm)

vậy MI=2,3 cm

 Mình làm đâị hoing bt đúng ko nhé! chúc bạn học tốt!

30 tháng 10 2020

\(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}=\sqrt{5}\Rightarrow\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}\)

Đặt \(\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}=k\)thì \(\cos\alpha=\sqrt{5}k,\sin\alpha=k\)

Vậy \(A=\frac{\sin^2a+\cos^2\alpha}{\sin\alpha.\cos\alpha}=\frac{k^2+5k^2}{\sqrt{5}k.k}=\frac{6}{\sqrt{5}}\)