Cho tam giác ABC vuông tại A,AH là đường cao ,AB=8,AC=6
a)Giải tam giác
b)Tính AH,BH,CH
c)Phân giác của góc B (AD thuộc AH).Tính DH<các bạn dúng tính chất đường phân giác lớp 8 để tính nha>
hộ mk mới mai mk nộp r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét △MIN và △QMN có
Iˆ=Mˆ(=900)I^=M^(=900)
NˆchungN^chung
=>△MIN ∼ △QMN (g.g)(đpcm)
b) vì MNPQ là hình chữ nhật
=> NM//PQ
=> N1ˆ=Q1ˆ(SLT)N1^=Q1^(SLT)
XÉT △MIN và △MPQ có
Iˆ=Pˆ(=900)I^=P^(=900)
N1ˆ=Q1ˆ(cmt)N1^=Q1^(cmt)
=> △MIN ∼ △MPQ (g.g)(đpcm)
c xét △MIQ và △ NMQ có
Iˆ=Mˆ(=900)I^=M^(=900)
QˆchungQ^chung
=> △MIQ ∼ △ NMQ (g.g)
=> MQQN=IQMQMQQN=IQMQ
=> MQ.MQ=QN.QI
=> MQ2=QN.QI(đpcm)
d>xét △MNQ có Mˆ=900M^=900 theo đl pi ta go ta có
QN2 =QM2+MN2
⇔ QN2=32+42
⇔ QN2=25
⇔ QN=5 (cm)
vì MNPQ là hình cữ nhật
=> QM=NP=3cm
vì △MIQ ∼ △ NMQ (theo c)
=> MINM=MQNQ=MI4=35MINM=MQNQ=MI4=35
=> MI= 4.35=2,4(cm)4.35=2,4(cm)
vậy MI=2,3 cm
Mình làm đâị hoing bt đúng ko nhé! chúc bạn học tốt!
\(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}=\sqrt{5}\Rightarrow\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}\)
Đặt \(\frac{\cos\alpha}{\sqrt{5}}=\frac{\sin\alpha}{1}=k\)thì \(\cos\alpha=\sqrt{5}k,\sin\alpha=k\)
Vậy \(A=\frac{\sin^2a+\cos^2\alpha}{\sin\alpha.\cos\alpha}=\frac{k^2+5k^2}{\sqrt{5}k.k}=\frac{6}{\sqrt{5}}\)
Hình:
ABC68HD
~~~
a/ A/dụng pitago vào tam giác ABC v tại A có:
BC2=AB2+AC2=62+82=100⇒BC=10(cm)BC2=AB2+AC2=62+82=100⇒BC=10(cm)
Áp dụng hệ thức lượng trong tam giác v ABC có:
+) AB2 = BC . BH => BH=AB2BC=3610=3,6(cm)BH=AB2BC=3610=3,6(cm)
=> HC = BC - BH = 10 - 3,6 = 6,4(cm)
+) AH2 = BH . HC = 3,6 . 6,4 = 23,04
=> AH = 4,8 (cm)
b/ Vì AD là p/g góc BAC
=> BDDC=ABAC⇒BDAB=DCAC=BD+DCAB+AC=BC6+8=106+8=57BDDC=ABAC⇒BDAB=DCAC=BD+DCAB+AC=BC6+8=106+8=57
=> ⎧⎩⎨⎪⎪⎪⎪BD=57⋅6=307(cm)DC=57⋅8=407(cm)
Chúc bạn hok tốt ^^
By Ryu