hai sinh viên A và B chơi một trò chơi như sau. mỗi người lần lượt rút 1 viên bi từ hộp đựng 2 bi trắng và 4 bi đen. bi đc rút ra không trả lại vào hộp. người nào rút đc bi trắng trc thắng cuộc. tính xã suất thắng cuộc của người rút trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^2x=\frac{1}{2}\)
\(\frac{1-cos2x}{2}=\frac{1}{2}\)
\(1-cos2x=1\)
\(cos2x=0\)
\(2x=\frac{\pi}{2}+k\pi\)
\(x=\frac{\pi}{4}+\frac{k\pi}{2}\)
tìm các nghiệm của x=\(\frac{\pi}{4}+\frac{\pi n}{2}\)bằng cách giải x
x=\(\frac{\pi}{4}+\frac{\pi n}{2}\), cho mọi số nguyên n
Có: \(sin^2\phi=\frac{1}{1+cot^2\phi}=\frac{1}{a^2+1}\), Từ đây ta được các đẳng thức:
\(sin2\phi=2sin\phi cos\phi=2cot\phi sin^2\phi=\frac{2a}{a^2+1}\)
\(cos2\phi=1-2sin^2\phi=1-\frac{2}{a^2+1}=\frac{a^2-1}{a^2+1}\)
Xét: \(sin\left(2\phi-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\left(sin2\phi-cos2\phi\right)=\frac{\sqrt{2}}{2}\left(\frac{2a}{a^2+1}-\frac{a^2-1}{a^2+1}\right)=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}\left(a+1\right)}{a^2+1}\)
Giả sử \(y\) nằm giữa \(x\) và \(z\)
\(\Rightarrow\left(y-z\right)\left(y-x\right)\le0\)
\(\Leftrightarrow y^2+zx\le xy+zx\)
\(\Leftrightarrow y^2z+z^2x\le xyz+z^2x\)
\(\Leftrightarrow x^2y+y^2z+z^2x\le x^2y+xyz+z^2x=y.\left(x^2+zx+z^2\right)\)
Nên : \(P\le y.\left(x^2+zx+z^2\right)\le y.\left(x+z\right)^2\)
\(=\frac{1}{2}.2y.\left(x+z\right).\left(x+z\right)\le\frac{1}{2}.\left[\frac{2y+x+z+x+z}{3}\right]^3\) \(=\frac{1}{2}\cdot\frac{8}{27}=\frac{4}{27}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0,y=\frac{1}{3},z=\frac{2}{3}\) và các hoán vị.