tìm các cặp số nguyên x,y thoả mãn x2-2x+22y-2y+3+17=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(8x - 3)(3x + 2) - (4x + 7)(x + 4) = (4x + 1)(5x - 1)
<=> (24x2 + 7x - 6) - (4x2 + 23x + 28) = 20x2 + x - 1
<=> 24x2 + 7x - 6 - 4x2 - 23x - 28 - 20x2 - x + 1 = 0
<=> -17x - 33 = 0
<=> -17x = 33
<=> x = -33/17
Vậy x = -33/17 là giá trị cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề (x + 5)2 - (x - 5)2 - 20x + 2
= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2
= 2
=> Biểu thức trên không phụ thuộc vào biến
Sửa đề :
(x + 5)2 - (x - 5)2 - 20x + 2
= x2 + 10x + 26 - x2 + 10x - 25 - 20x + 2
= 2
=> Biểu thức trên ko phụ thuộc vào biến.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a)\(\left(a+12\right)^2=a^2+24a+144\)
b)\(\left(3a+\frac{1}{3}\right)^2=9a^2+2a+\frac{1}{9}\)
c)\(\left(5a^2+6\right)^2=25a^4+60a^2+36\)
d)\(\left(\frac{1}{2}+4b\right)^2=\frac{1}{4}+4b+16b^2\)
e)\(\left(a^m+b^n\right)^2=a^{2m}+2a^mb^n+b^{2n}\)
Bài 2:
a)\(\left(x-0,3\right)^2=\left(x-\frac{3}{10}\right)^2=x^2-\frac{3}{5}x+\frac{9}{100}\)
b)\(\left(6x-3y\right)^2=36x^2-36xy+9y^2\)
c)\(\left(5-2xy\right)^2=25-20xy+4x^2y^2\)
d)\(\left(x^4-1\right)^2=x^8-2x^4+1\)
e)\(\left(x^5-y^3\right)^2=x^{10}-2x^5y^3+y^6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=3x^2+x-1=3\left(x^2+\frac{x}{3}+\frac{1}{36}\right)-\frac{13}{12}=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow x+\frac{1}{6}=0\)\(\Leftrightarrow x=-\frac{1}{6}\)
Vậy \(MinA=-\frac{13}{12}\Leftrightarrow x=-\frac{1}{6}\)
b)\(B=t^2-6t=\left(t^2-6t+9\right)-9=\left(t-3\right)^2-9\ge-9\forall t\)
Dấu "=" xảy ra \(\Leftrightarrow t-3=0\)\(\Leftrightarrow t=3\)
Vậy \(MinB=-9\Leftrightarrow t=3\)
c)\(C=x^2+\frac{3}{2}y^2-2x-4y+4\)
\(=\left(x^2-2x+1\right)+\frac{3}{2}\left(y^2-\frac{8}{3}y+\frac{16}{9}\right)+\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{3}{2}\left(y-\frac{4}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{4}{3}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{4}{3}\end{cases}}\)
Vậy \(MinC=\frac{1}{3}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{4}{3}\end{cases}}\)
d)\(D=2x^2+y^2-2xy+4x+2024\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+2020\)
\(=\left(x-y\right)^2+\left(x+2\right)^2+2020\ge2020\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y\\x=-2\end{cases}}\)\(\Leftrightarrow x=y=-2\)
Vậy \(MinD=2020\Leftrightarrow x=y=-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+y^2+\frac{8xy}{x+y}=16\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4x^2+4y^2+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4x+4y\right)=0\)
\(\Leftrightarrow x+y-4=0\)(vì \(x^2+y^2+4x+4y>0\))
\(\Leftrightarrow y=4-x\).
\(Q=x^2-2x+4y+100=x^2-2x+4\left(4-x\right)+100\)
\(=x^2-6x+116=\left(x-3\right)^2+107\ge107\)
Dấu \(=\)khi \(x=3\Rightarrow y=1\).
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-6x-17=\left(x^2-6x+9\right)-26=\left(x-3\right)^3-26\ge-26\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
b)\(x^2-10x=\left(x^2-10x+25\right)-25=\left(x-5\right)^2-25\ge-25\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
c)\(3x^2-12x+5=3\left(x^2-4x+4\right)-7=3\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
d)\(2x^2-x+1=2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{7}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{4}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{4}=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
e)\(x^2+y^2-8x+4y+27=\left(x^2-8x+16\right)+\left(y^2+4y+4\right)+7=\left(x-4\right)^2+\left(y+2\right)^2+7\ge7\forall x\)Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-4=0\\y+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4\\y=-2\end{cases}}\)
f)\(x\left(x-6\right)=x^2-6x=\left(x^2-6x+9\right)-9=\left(x-3\right)^2-9\ge-9\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
h)\(\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)\left(x-5\right)\left(x-2\right)\left(x-5\right)=\left[\left(x-2\right)\left(x-5\right)\right]^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thực hiện phép chia \(x^4+mx^3+n\)cho \(x^2-1\)ta được:
\(x^4+mx^3+n=\left(x^2-1\right)\left(x^2+mx+1\right)+mx+n+1\)
Để \(x^4+mx^3+n\)chia hết cho \(x^2-1\)thì \(mx+n+1=0\)vói mọi \(x\).
Suy ra \(\hept{\begin{cases}m=0\\n+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=0\\n=-1\end{cases}}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
[ Câu hỏi của Angels of Death - Toán lớp 8 - Học trực tuyến OLM ]
Mình trả lời bạn ở câu này rồi nhé