Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(2x-3)(x^2+x+1)-x(2x^2-x-1)`
`=2x^3+2x^2+2x-3x^2-3x-3-2x^3+x^2+x`
`=(2x^3-2x^3)+(2x^2-3x^2+x^2)+(2x-3x+x)-3`
`=-3`
(x + 1)2 - (2x - 1)2 = 0
<=> (x + 1 + 2x - 1) (x + 1 - 2x + 1) = 0
<=> 3x (- x + 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\-x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy tập nghiệm pt: S = {0 ; 2}.
( x + 1 )2 - ( 2x - 1 )2 = 0
=> ( x + 1 )2 = ( 2x - 1 )2
=> x + 1 = 2x - 1
=> x + 2 = 2x
=> 2x - x = 2
=> x = 2
Vậy x = 2
Đặt \(f\left(x\right)=\left(x+1\right)P\left(x\right)-x\).
Khi đó \(f\left(k\right)=0\)với mọi \(k=0,1,2,...,2018\)mà \(P\left(x\right)\)có bậc \(2018\)nên \(f\left(x\right)\)có bậc \(2019\)
mà \(f\left(x\right)=0\)tại \(2019\)giá trị nên \(f\left(x\right)=ax\left(x-1\right)\left(x-2\right)...\left(x-2018\right)\).
Với \(x=-1\): \(a.\left(-1\right)\left(-2\right)...\left(-2019\right)=\left(-1+1\right)P\left(-1\right)-\left(-1\right)\)
\(\Leftrightarrow a=-\frac{1}{2019!}\).
\(P\left(2019\right)=\frac{f\left(2019\right)+2019}{2020}=\frac{-1+2019}{2020}=\frac{1009}{1010}\)
Tổng các hệ số phi khai triển đa thức \(P\left(x\right)\)là \(P\left(1\right)\).
\(P\left(1\right)=\left(1^3-2.1^2+2\right)^{2018}=1^{2018}=1\)
Đa thức \(P\left(x\right)=x^3-3x+1\)có ba nghiệm phân biệt \(x_1,x_2,x_3\) có:
\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-3\\x_1x_2x_3=-1\end{cases}}\)
\(E=Q\left(x_1\right)Q\left(x_2\right)Q\left(x_3\right)=\left(x_1^2-1\right)\left(x_2^2-1\right)\left(x_3^2-1\right)\)
\(=\left(x_1x_2x_3\right)^2-\left(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2\right)+\left(x_1^2+x_2^2+x_3^2\right)-1\)
\(=\left(x_1x_2x_3\right)^2-\left[\left(x_1x_2+x_2x_3+x_3x_1\right)^2-2x_1x_2x_3\left(x_1+x_2+x_3\right)\right]+\left[\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)\right]-1\)
\(=\left(-1\right)^2-3^2+2.3-1=-3\)
bn ơi, đề bài của bạn chụp thiếu rùi