\(\sqrt{x^2-4}\)-\(3\sqrt{x-2}\)+0
hãy giải p/trình trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{x^4-8x^2+16}=2-x\)ĐK : \(x\ge-2\)
\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\Leftrightarrow\left(x-2\right)\left(x+2\right)=-\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left[x+2+1\right]=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow x=2;-3\)
Theo ĐKXĐ Suy ra : \(x=2\)
b, tương tự
Áp dụng giả thiết và bất đẳng thức AM - GM, ta có: \(VT=\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}\)\(=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+x\right)\left(y+z\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)\(=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{y+z}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{y+z}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Theo nguyên lí Dirichlet thì trong 3 số 2a - 1, 2b - 1, 2c - 1 tồn tại ít nhất 2 số cùng dấu
Giả sử đó là 2a - 1 và 2b - 1 thì \(\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow4ab-2a-2b+1\ge0\Leftrightarrow2ab\ge a+b-\frac{1}{2}\)\(\Leftrightarrow2abc\ge ac+bc-\frac{c}{2}\)
\(P=ab+bc+ca-abc=ab+bc+ca-2abc+abc\)\(\le ab+bc+ca-ac-bc+\frac{c}{2}+abc=ab+abc+\frac{c}{2}\)\(\le\frac{a^2+b^2}{2}+abc+\frac{c}{2}+\frac{c^2}{2}-\frac{c^2}{2}-\frac{1}{8}+\frac{1}{8}\)\(=\frac{a^2+b^2+c^2+2abc}{2}-\frac{1}{2}\left(c-\frac{1}{2}\right)^2+\frac{1}{8}\le\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
\(\sqrt{x^2-4}-3\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-3\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-3\right)=0\)
TH1 : \(x=2\)
TH2 : \(\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\)