Cho A = 1 + \(\frac{1}{\sqrt{2}}\)+ \(\frac{1}{\sqrt{3}}\)+ \(\frac{1}{\sqrt{4}}\)+ ... + \(\frac{1}{\sqrt{200}}\)
Chứng minh A không phải là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2
\(\Leftrightarrow\hept{\begin{cases}y=0\\x=2\end{cases}}\)
Với x = 2; y = 0 thay vào hàm số ta được
\(\left(m+3\right).2+2m=0\Leftrightarrow2m+2m+6=0\)
\(\Leftrightarrow4m=-6\)
\(\Leftrightarrow m=-1,5\)
Vậy m = -1,5 là giá trị cần tìm