Cho hai số dương \(x,y\) sao cho \(x+y=1\). Chứng minh:
\(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\ge9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ge3\)
\(\sqrt{x}+\sqrt{x-3}=\sqrt{3}\Leftrightarrow\left(\sqrt{x}-\sqrt{3}\right)+\sqrt{x-3}=0\)\(\Leftrightarrow\frac{x-3}{\sqrt{x}+\sqrt{3}}+\sqrt{x-3}=0\Leftrightarrow\sqrt{x-3}\left(\frac{\sqrt{x-3}}{\sqrt{x}+\sqrt{3}}+1\right)=0\)
Dễ thấy \(\frac{\sqrt{x-3}}{\sqrt{x}+\sqrt{3}}+1>0\forall x\ge3\)nên \(\sqrt{x-3}=0\Leftrightarrow x=3\left(t/m\right)\)
Vậy nghiệm duy nhất của phương trình là 3.
Sửa =< \(A=\frac{2}{x^2-1}\)
Ta có : \(x^2-1\ge-1\)Do đó :
\(\frac{2}{x^2-1}\ge\frac{2}{-1}=-2\)hay \(A\ge-2\)
Dấu ''='' xảy ra <=> x = 0
Vậy GTNN A là 2 <=> x = 0
Trả lời hộ mình cái xin. mình đã 2 năm ko on r giờ mới on lại :(((.Xin mọi người trả lời giúp mình :(((
Ta có :
\(a+b=c^3-2018\Leftrightarrow a+b+c=\left(c-1\right).c\left(c+1\right)-2016c⋮6\)
Mặt khác :
\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right).a\left(a+1\right)+\left(b-1\right)b.\left(b+1\right)+\left(c-1\right).c\left(c+1\right)⋮6\)
Do vậy \(a^3+b^3+c^3⋮6\)
Áp dụng giả thiết x + y = 1, ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}=1-\frac{1}{\left(1-y\right)^2}-\frac{1}{y^2}+\frac{1}{\left(1-y\right)^2y^2}\)
Ta cần chứng minh: \(1-\frac{1}{\left(1-y\right)^2}-\frac{1}{y^2}+\frac{1}{\left(1-y\right)^2y^2}\ge9\)(*)
(*)\(\Leftrightarrow\frac{-2y\left(y-1\right)\left(2y-1\right)^2}{\left(1-y\right)^2y^2}\ge0\)*đúng do \(-2y\left(y-1\right)\left(2y-1\right)^2=-2y.\left(-x\right)\left(2y-1\right)^2=2xy\left(2y-1\right)^2\ge0\)*
Vậy \(P\ge9\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Bài này ko cần biến đổi phức tạp làm mày như cách 1 của mình, mình sẽ trình bày cách 2 dễ hiểu hơn
\(P=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}\)\(=\frac{\left(-y\right).\left(x+1\right).\left(-x\right).\left(y+1\right)}{x^2y^2}=\frac{\left(x+1\right)\left(y+1\right)}{xy}\)\(=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}\ge1+\frac{4}{x+y}+\frac{4}{\left(x+y\right)^2}=9\)
Done!