Cho đường tròn (O ; R), các đường kính AB và CD vuông góc với nhau. Gọi I là trung điểm của BO. Tia CI cắt đường tròn tại E, EA cắt CD ở K. Tính độ dài DK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có góc BAD =BOD ( vì cùng chắn cung BD) (*)
Lại có BAD cũng là góc nt chắn cung BC và góc BOC là góc ở tâm chắn cung BC
=> BAC =1/2 BOC
Từ (*) => BOD=1/2 BOC
=> BOD =COD ( vì cùng =1/2 BOC )
=>OD là tia p/g của góc BOC
mà tam giác BOC cân tại O
=> OD là tia p/g đồng thời cũng là đường cao của tam giác BOC
=> OD vuông góc BD (đpcm)
a)Xét đt O có :
ΔOBC cân tại O (OB=OC bk đt O)
Có góc BOD chắn cung BD
Mà góc BAD cùng chắn cung BD
⇒góc BOD=góc BAD=góc BAC
Má góc BAC chắn cung BC
⇒BAC=\(\dfrac{1}{2}\)cung BC
mà BOC = cung BC (cung chắn tâm)
⇒BOD=BAC=\(\dfrac{1}{2}\)BOD
b)Trong đt O',FAB=\(\dfrac{1}{2}\)FOB(góc nội tiếp=nửa góc ở tâm cùng chắn một cung)
Có EAB=EOB(cùng chắn cung EB)
⇒FAB=\(\dfrac{1}{2}\)EAB⇒AF là p|g EAB
cmtt⇒BF là p|g EBA
⇒F LÀ GIAO 3 ĐƯỜNG P|G EAB
⇒ Điểm F cách đều ba cạnh của tam giác ABE
\(S_{ABC}=\frac{bc\sin A}{2}=\frac{ac\sin B}{2}=\frac{ab\sin C}{2}=\frac{abc}{4R}\)
+ Từ \(\frac{bc\sin A}{2}=\frac{ac\sin B}{2}\Rightarrow b\sin A=a\sin B\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\left(1\right)\)
+ Từ \(\frac{ac\sin B}{2}=\frac{ab\sin C}{2}\Rightarrow c\sin B=b\sin C\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(2\right)\)
+ Từ \(\frac{bc\sin A}{2}=\frac{abc}{4R}\Rightarrow\sin A=\frac{a}{2R}\Rightarrow\frac{a}{\sin A}=2R\left(3\right)\)
Từ (1) (2) (3) \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\left(dpcm\right)\)
A B C H K
Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)
Ta có : sinA=BKABsinA=BKAB ; sinB=AHABsinB=AHAB ; sinC=AHACsinC=AHAC
⇒ABsinC=ABAHAC=AB.ACAH⇒ABsinC=ABAHAC=AB.ACAH ; ACsinB=ACAHAB=AB.ACAHACsinB=ACAHAB=AB.ACAH
⇒csinC=bsinB⇒csinC=bsinB (1)
Lại có : BK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinCBK=sinC.BC⇒BCsinA=BCBKAB=BC.ABBK=AB.BCsinC.BC=ABsinC
⇒asinA=csinC⇒asinA=csinC (2)
Từ (1) và (2) ta có : asinA=bsinB=csinCasinA=bsinB=csinC (Đpcm)
A B C 0 H D
Vẽ đường kính AD và AH⊥BC(H∈BC)AH⊥BC(H∈BC).
Ta có \(\widehat{ACD}\)ACD^ là góc nội tiếp chắn nửa đường tròn ⇒\(\widehat{ACD}\)=900⇒ACD^=900.
Xét ΔABHΔABH và ΔADCΔADC có:
\(\widehat{AHB}\)=\(\widehat{ACD}\)=900AHB^=ACD^=900;
ABH^=ADC^ \(\widehat{ABH}=\widehat{ADC}\)(hai góc nội tiếp cùng chắn cung AC);
⇒ΔABH∼ΔADC(g.g)⇒AHAC=ABAD⇒515=82R⇒2R=24⇔R=12(cm)⇒ΔABH∼ΔADC(g.g)⇒AHAC=ABAD⇒515=82R⇒2R=24⇔R=12(cm)
gọi x,y là số tấn quặng sắt loại I và loại II đã trộn với nhau lúc ban đầu
khi đó
phần trăm quặng sắt của hỗn hợp trên là \(\frac{0.7x+0.4y}{x+y}=0.6\)
phần trăm của quặng sắt của hỗn hợp sau là \(\frac{0.7\left(x+5\right)+0.4\left(y-5\right)}{x+5+y-5}=0.65\Leftrightarrow\frac{0.7x+0.4y+0.15}{x+y}=0.65\)
hay \(\frac{0.7x+0.4y}{x+y}+\frac{1.5}{x+y}=0.65\Rightarrow\frac{1.5}{x+y}=0.05\Rightarrow x+y=30\Rightarrow0.7x+0.4y=18\)
từ đây ta giải hệ \(\hept{\begin{cases}x+y=30\\0.7x+0.4y=18\end{cases}\Leftrightarrow\hept{\begin{cases}x=20\\y=10\end{cases}}}\)
a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)
b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm
Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.
đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1
Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.
suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020
mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)
xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1
hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1. Suy ra vô lý.
Vậy P(x) không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.
O A B C D I E K
Ta có :
\(\frac{KC}{sin\widehat{CAK}}=\frac{R\sqrt{2}}{sin\widehat{AKC}}=\frac{R\sqrt{2}}{sin\widehat{AED}}=\frac{AE}{sin\widehat{ADE}}=\frac{AE}{sin\widehat{BIE}}=\frac{AE}{sin\widehat{AIE}}=\frac{3R}{\sqrt{2}}\)
\(\Rightarrow sin\widehat{AKC}=\frac{2}{3}\)
\(\Rightarrow AK=\frac{2}{3R}\)
áp dụng định lý Py ta go vào \(\Delta AOK\) ta được
\(AK^2=AO^2+OK^2\)
\(\Rightarrow OK=\sqrt{R^2-\frac{4}{9R^2}}=\sqrt{9R^4-4}\)
\(\Rightarrow DK=OD-OK=R-\sqrt{9R^4-4}\)
\(AK=\frac{2}{\sqrt{3}}R\) chứ bạn?