Ở hình vẽ trên, Bx là tiếp tuyến, CD // BE, $\widehat{DME}=40°$. Tính số đo $\widehat{xBC}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Nối M và K
Xét (O) có: \(\hat{AMK}\) là góc nội tiếp chắn cung nhỏ AK
\(\hat{KAB}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ AK
\(\Rightarrow\) \(\hat{AMK}\) = \(\hat{KAB}\) ( cùng = 1/2 cung nhỏ AK ) (1)
Xét (O') có : \(\hat{BMK}\) là góc nội tiếp chắn cung nhỏ BK
\(\hat{KBA}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ BK
\(\Rightarrow\) \(\hat{BMK}\) = \(\hat{KBA}\) ( cùng =1/2 cung nhỏ BK ) (2)
Từ (1) và (2) \(\Rightarrow\) \(\hat{AMK}\)+\(\hat{BMK}\)=\(\hat{KAB}\)+ \(\hat{KBA}\)
\(\Leftrightarrow\) \(\hat{AMB}\) = 50° = \(\hat{KAB}\) + \(\hat{KBA}\)
Xét △ KAB có: \(\hat{AKB}\) +(\(\hat{KAB}\) + \(\hat{KBA}\) )= 180° ( Tổng ba góc trong một tam giác)
\(\Leftrightarrow\) \(\hat{AKB}\) + 50° = 180°
\(\Leftrightarrow\)\(\hat{AKB}\) = 180°-50°
\(\Leftrightarrow\)\(\hat{AKB}\) = 130°
Vậy \(\hat{AKB}\) có số đo là 130°
cần hình ib mình mình gửi cho nhé =)
a)
Vì (O) và (O′) cắt nhau tại hai điểm A và B nên OO′ vuông AB ( định lý )
- Xét tam giác ADC
Có OO′ là đường trung bình ( vì O là trung điểm AC , O′ là trung điểm của AD)
Nên => OO′ // CD
=> AB vuông CD ( Quan hệ từ vuông góc đến song song )
Xét tam giác ADC
Có AC = AD ( vì hai đường tròn (O) và (O′) có cùng bán kính )
=> Tam giác ACD cân tại A có AB là đường cao nên AB cũng là đường trung tuyến
=> BC = BD hay cung BC = cung BD (vì (O) và (O′) là hai đường tròn bằng nhau )
b) Xét đường tròn (O′) có A , E , D cùng thuộc đường tròn và AD là đường kính nên tam giác AED vuông tại E
\(\Rightarrow DE\perp AC\Rightarrow\widehat{DEC}=90^o\)
- Xét \(\Delta DEC\)vuông tại E có B là trung điểm DC ( cmt )
\(\Rightarrow EB=\frac{DC}{2}=BD=EB\)
=> Cung EB = cung BD ( định lý )
Do đó B là điểm chính giữa cung ED
Ta có: \(4a^2+a\sqrt{2}-\sqrt{2}=0\Leftrightarrow a^2+\frac{\sqrt{2}}{4}a-\frac{\sqrt{2}}{4}=0\Leftrightarrow a^2=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{4}a\)\(\Leftrightarrow a^4=\frac{1}{8}+\frac{1}{8}a^2-\frac{1}{4}a\Leftrightarrow a^4+a+1=\frac{1}{8}a^2+\frac{3}{4}a+\frac{9}{8}=\frac{1}{8}\left(a+3\right)^2\)\(\Rightarrow\sqrt{a^4+a+1}=\frac{1}{2\sqrt{2}}\left(a+3\right)\)(Do a > 0)
\(\Rightarrow\sqrt{a^4+a+1}-a^2=\frac{1}{2\sqrt{2}}\left(a+3\right)-\left(\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{4}a\right)=\frac{\sqrt{2}}{2}a+\frac{\sqrt{2}}{2}\)
Suy ra \(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{a+1}{\frac{\sqrt{2}}{2}\left(a+1\right)}=\sqrt{2}\)
O A B C D E
a, vì \(AD\) là tia phân giác của góc \(\widehat{BAC}\) \(\Rightarrow\widehat{BAD}=\widehat{EAC}\)
mà \(\widehat{ABD}=\widehat{ABC}=\widehat{AEC}\)
\(\Rightarrow\Delta ABD~\Delta AEC\) (g-g)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AC}\Leftrightarrow AB.AC=AE.AD\)
b, Ta có :
\(\widehat{EBD}=\widehat{EBC}=\widehat{EAC}=\widehat{BAE}\)
\(\Rightarrow\Delta EBD~\Delta EAB\)(g-g)
\(\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Leftrightarrow ED.EA=EB^2\)
a)xét ΔABE và ΔADC có :
BÅE = DÅC (gt)
AEB=ACB=ACD(cùng chắn cung AB)
=>ΔABE≈ΔADC(g.g)
⇒\(\dfrac{AE}{AC}=\dfrac{AB}{AD}\)(hai cạnh t.ứ)
⇒AE.AD=AC.AB
b)Xét ΔBED và ΔAEB có :
góc E chung
góc EBD=gócEAC=gócEAB
⇒ΔBED ≈ ΔAEB(g.g)
⇒\(\dfrac{ED}{EB}=\dfrac{EB}{EA}\)(hai cạnh t.ứ)
⇒ED.EA=EB2
1000