Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài mảnh vườn là x ( x > 0 )
=> Chiều rộng mảnh vườn = 720/x ( m )
Tăng chiều dài 6m và giảm chiều rộng 4m
=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m
Khi đó diện tích mảnh vườn không đổi
=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )
Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )
=> Chiều dài mảnh vườn = 30m
Chiều rộng mảnh vườn = 720/30 = 24m
gọi số có hai chữ số đó là \(\overline{ab}\) ta có
\(\hept{\begin{cases}a-b=2\\\overline{a0b}-\overline{ab}=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=2\\100a+b-10a-b=630\end{cases}\Leftrightarrow}\hept{\begin{cases}a=7\\b=5\end{cases}}}\)
Vậy số đó là\(75\)
so sánh \(\frac{\sqrt{21}-\sqrt{13}}{35-2\sqrt{273}}+\frac{\sqrt{10}-\sqrt{5}}{16-10\sqrt{2}}\)với 1
Xét phân thức tổng quát sau: \(a^4+\frac{1}{4}=\frac{4a^4+1}{4}=\frac{\left(4a^4+4a^2+1\right)-4a^2}{4}=\frac{\left(2a^2+1\right)^2-\left(2a\right)^2}{4}\)
\(=\frac{\left(2a^2-2a+1\right)\left(2a^2+2a+1\right)}{4}=\frac{\left[\left(a-1\right)^2+a^2\right]\left[a^2+\left(a+1\right)^2\right]}{4}\)
Khi đó ta sẽ có:
\(1^4+\frac{1}{4}=\frac{\left(0^2+1^2\right)\left(1^2+2^2\right)}{4}\) ; \(2^4+\frac{1}{4}=\frac{\left(1^2+2^2\right)\left(2^2+3^2\right)}{4}\)
; .... ; \(2006^4+\frac{1}{4}=\frac{\left(2005^2+2006^2\right)\left(2006^2+2007^2\right)}{4}\)
=> \(S=\frac{\frac{\left(0^2+1^2\right)\left(1^2+2^2\right)...\left(2004^2+2005^2\right)\left(2005^2+2006^2\right)}{4^{1003}}}{\frac{\left(1^2+2^2\right)\left(2^2+3^2\right)...\left(2005^2+2006^2\right)\left(2006^2+2007^2\right)}{4^{1003}}}=\frac{1}{2006^2+2007^2}\)
a, Theo bài ra ta có : \(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)
Thay m = 1 vào hệ phương trình trên ta có :
\(\hept{\begin{cases}x+4y=9\\x+y=8\left(2\right)\end{cases}}\)Xét hiệu 2 phương trình : \(3y=1\Leftrightarrow y=\frac{1}{3}\)
Thay vào (2) ta được : \(x+\frac{1}{3}=8\Leftrightarrow x=8-\frac{1}{3}=\frac{23}{3}\)
Vậy \(x=\frac{23}{3};y=\frac{1}{3}\)
b, Vì hệ phương trình có nghiệm ( 1 ; 3 ) nên thay x = 1 ; y = 3 vào hệ phương trình trên :
\(\hept{\begin{cases}m+12=9\\3m=8\end{cases}\Leftrightarrow}m=-3;m=\frac{8}{3}\)
Vậy \(m=-3;m=\frac{8}{3}\)
a, Vì m = 1 thay vào hệ pt, ta có pt sau
\(\hept{\begin{cases}x+4y=9\\x+y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=9-4y\left(1\right)\\9-4y+y=8\left(2\right)\end{cases}}}\)
\(\left(2\right)\Leftrightarrow3y=1\)
\(\Rightarrow y=\frac{1}{3}\)
Thay vào pt ( 1 ), ta có :
\(x=9-4.\frac{1}{3}=\frac{23}{3}\)
Vậy nghiệm ( x ; y ) pt là\(\left(\frac{23}{3};\frac{1}{3}\right)\)
b, Vì pt có nghiệm là ( 1 ; 3 ) hay x = 1 ; y = 3
Thay vào pt, ta có :\(\hept{\begin{cases}m+12=9\\1+3m=8\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\\m=\frac{7}{3}\end{cases}}\)
Vậy ...