Cho x, y là 2 số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(100\)viết được thành tổng của \(k\)số tự nhiên liên tiếp, số hạng đầu tiên là \(n+1\).
Ta có: \(100=\left(n+1\right)+\left(n+2\right)+...+\left(n+k\right)\)
\(100=kn+\frac{k\left(k+1\right)}{2}\)
\(200=k\left(2n+k+1\right)\)
Suy ra \(k,2n+k+1\)đều là ước của \(200\).
Ta có \(200=2^3.5^2\), \(k< 2n+k+1\), \(k\)và \(2n+k+1\)khác tính chẵn lẻ nên ta có bảng sau:
k | 1 | 5 | 8 |
2n+k+1 | 200 | 40 | 25 |
n | 99 | 17 | 8 |
Vậy ta có các cách biểu diễn số \(100\)thành tổng các số tự nhiên liên tiếp như sau:
- \(100=100\).
- \(100=18+19+20+21+22\).
- \(100=9+10+11+12+13+14+15+16\).
giả sử k là số tự nhiên liên tiếp n+1,n+2,...n+k . n,k lớn hơn hoặc bằng 2 cố tổng bằng 100
ta có (n+1)+(n+2).k/2=100
=>(2n+k+1).k=200
nhận xét 2n+k+1>k;(2n+k +1)-k=2n+1 là một số lẻ
từ đó ta có các trường hợp
k=5=>n=17,k=8=>n=8
Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)
Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)
=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)
Mà (x+2y)(3x+4y)=96 chẵn
=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)
Từ (1) và (2) => 3x+4y, x+2y cùng chẵn
Ta có bảng sau:
3x+4y | 48 | 2 | 24 | 4 | 16 | 6 | 12 | 8 |
x+2y | 2 | 48 | 4 | 24 | 6 | 16 | 8 | 12 |
x | 44 | -94 | 16 | -44 | 4 | -26 | -4 | -16 |
y | -21 | 71 | -6 | 34 | 1 | 21 | 6 | 14 |
Vậy ...
Ta có: \(\hept{\begin{cases}\left(d_1\right):mx+\left(m-1\right)y=3m+4\\\left(d_2\right):2mx+\left(m+1\right)y=m-4\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(d_1\right):mx-3m-4=\left(1-m\right)y\\\left(d_2\right):2mx+4-m=-\left(m+1\right)y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(d_1\right):\frac{m}{1-m}x-\frac{3m+4}{1-m}=y\\\left(d_2\right):-\frac{2m}{m+1}x+\frac{m-4}{m+1}=y\end{cases}}\) khi đó ta có:
Để (d1) // (d2) thì: \(\hept{\begin{cases}\frac{m}{m-1}=\frac{2m}{m+1}\\\frac{3m+4}{m-1}\ne\frac{m-4}{m+1}\end{cases}}\Rightarrow m=3\)
Đề (d1) cắt (d2) thì: \(\frac{m}{m-1}\ne\frac{2m}{m+1}\Rightarrow m\ne\left\{0;3\right\}\)
Để (d1) trùng (d2) thì: \(\hept{\begin{cases}\frac{m}{m-1}=\frac{2m}{m+1}\\\frac{3m+4}{m-1}=\frac{m-4}{m+1}\end{cases}}\Rightarrow m=0\)
Toạ độ giao điểm của các đường thẳng mx-2y=3 và 3x+my =4 là nghiệm của hpt \(\hept{\begin{cases}mx-2y=3\\3x+my=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3mx-6y=9\\3mx+m^2y=4m\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m^2+6\right)y=4m-9\\3x+my=4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{4m-9}{m^2+6}\\3x+\frac{4m^2-9m}{m^2+6}=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{4m-9}{m^2+6}\\3x=4-\frac{4m^2-9m}{m^2+6}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{4m-9}{m^2+6}\\3x=\frac{9m+24}{m^2+6}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3m+8}{m^2+6}\\y=\frac{4m-9}{m^2+6}\end{cases}}\)
Để giao điểm nằm trong góc phần tư IV
\(\Rightarrow\hept{\begin{cases}x>0\\y< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{3m+8}{m^2+6}>0\\\frac{4m-9}{m^2+6}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}3m+8>0\\4m-9< 0\end{cases}\Leftrightarrow\hept{\begin{cases}m>\frac{-8}{3}\\m< \frac{9}{4}\end{cases}}}}\)
\(\Leftrightarrow\frac{-8}{3}< m< \frac{9}{4}\)
Để \(m\inℤ\Rightarrow m\in\left\{0,\pm1,\pm2\right\}\)
Gọi số sản phẩm mà hai tổ làm được trong tháng trước lần lượt là x và y.
Tổng số sản phẩm mà hai tổ làm được trong tháng trước là: x+y=1000 (1)
Số sản phẩm tổ 1 làm được trong tháng này là:
x−15%x
Số sản phẩm tổ 21 làm được trong tháng này là:
y+15%y
Tổng số sản phẩm hai tổ làm được trong tháng này là:
(x−15%x)+(y+15%y)=1030 (2)
Giải (1) và (2), ta được:
x=400; y=600
Vậy sản phẩm tổ 1 làm được trong tháng này là: 340sp
Sản phẩm tổ 2 làm được trong tháng này là 690sp
Gọi số xe to hoặc số xe nhỏ lần lượt là \(a,b\)(xe) (\(a,b\inℕ^∗\))
Theo bài ra, ta có hệ phương trình:
\(\hept{\begin{cases}a=b-2\\\frac{180}{a}-\frac{180}{b}=15\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b-2\\\frac{180}{b-2}-\frac{180}{b}=15\end{cases}\Leftrightarrow\hept{\begin{cases}a=b-2\\\frac{360}{b\left(b-2\right)}=15\end{cases}}}\)
\(\frac{360}{b\left(b-2\right)}=15\Rightarrow15b\left(b-2\right)=360\Leftrightarrow\orbr{\begin{cases}b=6\left(tm\right)\\b=-4\left(l\right)\end{cases}}\)
Suy ra \(\hept{\begin{cases}a=4\\b=6\end{cases}}\).
Gọi số người dự họp và số ghế có trong phòng lần lượt là \(a,b\)(\(a,b\inℕ\))
Theo bài ra ta có hệ phương trình: \(\hept{\begin{cases}a=5b+9\\a=6b-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=59\\b=10\end{cases}}\)(thỏa mãn)
Áp dụng bất đẳng thức Cauchy, ta có: \(\sqrt{x\left(2x+y\right)}=\frac{1}{\sqrt{3}}.\sqrt{3x\left(2x+y\right)}\le\frac{5x+y}{2\sqrt{3}}\)
Tương tự: \(\sqrt{y\left(2y+x\right)}\le\frac{5y+x}{2\sqrt{3}}\)
\(\Rightarrow\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\le\frac{6\left(x+y\right)}{2\sqrt{3}}=\frac{3\left(x+y\right)}{\sqrt{3}}\)\(\Rightarrow P=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\ge\frac{x+y}{\frac{3}{\sqrt{3}}\left(x+y\right)}=\frac{1}{\sqrt{3}}\)
Đẳng thức xảy ra khi x = y