Cho tam giác ABC có đường cao BE, CF. Gọi M,N lần lượt là trung điểm của BE,CF. Kẻ \(AK\perp EF\left(K\in EF\right)\)
Chứng minh rằng tam giác KMN đồng dạng tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(-m^2\right)^2-4.1\left(m+1\right)=m^4-4m-4\)
Pt có nghiệm nguyên khi \(\Delta=m^4-4m-4\) là số chính phương
Nếu \(\orbr{\begin{cases}m=0\\m=1\end{cases}\Rightarrow\Delta< 0}\) ( loại)
Nếu m=2 => \(\Delta=4=2^2\) ( chọn)
Nếu \(m\ge3\Rightarrow2m\left(m-2\right)>5\Leftrightarrow2m^2-4m-5>0\)
\(\Leftrightarrow\Delta-\left(2m^2-4m-5\right)< \Delta< \Delta+4m+4\)
\(\Leftrightarrow m^4-2m^2+1< \Delta< m^4\)
\(\Leftrightarrow\left(m^2-1\right)^2< \Delta< \left(m^2\right)^2\)
=> \(\Delta\) không là số chính phương
Vậy m=2
Đặt \(K=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)\(\Rightarrow K^2=\left(49-12\sqrt{5}\right)+\left(49+12\sqrt{5}\right)-2\sqrt{49^2-\left(12\sqrt{5}\right)^2}\)\(=98-2\sqrt{1681}=98-82=16\)(1)
Dễ có: \(\sqrt{49-12\sqrt{5}}< \sqrt{49+12\sqrt{5}}\)nên \(K=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}< 0\)(2)
Từ (1) và (2) suy ra K = -4
\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-12\sqrt{5}+4}-\sqrt{45+12\sqrt{5}+4}\)
\(=\sqrt{\left(3\sqrt{5}\right)^2-2.2.3\sqrt{5}+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2.2.3\sqrt{5}+2^2}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|=\left(3\sqrt{5}-2\right)-\left(3\sqrt{5}+2\right)\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
18 phút = 0,3 giờ
Gọi vận tốc ban đầu là x
Thời gian dự định là \(\frac{336}{x}\)
Nửa quãng đường ab là 336:2=168 km
Thời gian đi nửa quãng đường đầu là \(\frac{168}{x}\)
Vận tốc nửa quãng đường sau là x+2 nên thời gian đi nửa quãng đường sau là \(\frac{168}{x+2}\)
Ta có phương trình
\(\frac{168}{x}-\frac{168}{x+2}=0,3\Leftrightarrow x^2+3x-1120=0\) Giải PT bậc 2 ta được x=32
Vậy vận tốc ban đầu là 32 km/h
Thời gian xe lăn bánh trên đường là
\(\frac{168}{32}+\frac{168}{32+2}=10\frac{13}{68}\) giờ
Gọi chiều dài, chiều rộng mảnh vườn là x và y ( m ; x > y ; x > 3 ; y > 2 )
Diện tích ban đầu = xy ( m2 )
Tăng chiều dài 1m và giảm chiều rộng 2m thì diện tích giảm 20m2 so với quy định
=> ( x + 1 )( y - 2 ) = xy - 20
<=> xy - 2x + y - 2 - xy + 20 = 0
<=> -2x + y = -18 (1)
Giảm chiều dài 3m và tăng chiều rộng 4m thì diện tích tăng 12m2 so với dự định
=> ( x - 3 )( y + 4 ) = xy + 12
<=> xy + 4x - 3y - 12 - xy - 12 = 0
<=> 4x - 3y = 24 (2)
Từ (1) và (2) ta có hệ phương trình : \(\hept{\begin{cases}-2x+y=-18\\4x-3y=24\end{cases}}\)
Giải hệ ta thu được x = 15 và y = 12
Hai nghiệm trên thỏa mãn ĐKXĐ
Vậy diện tích mảnh vườn ban đầu = xy = 15.12 = 180m2
Gọi x(m) là chiều rộng của mảnh vườn ban đầu
y(m) là chiều dài của mảnh vườn ban đầu
=> Diện tích ban đầu của mảnh vườn là x.y (m)
Ta có: Nếu tăng chiều dài thêm 1m và giảm chiều rộng 2m thì mảnh vườn giảm 20m ² so với dự định
=> (y+1).(x-2)=xy-20
<=> xy -2y+x -2= xy-20
<=> x-2y=-18 (1)
Nếu giảm chiều dài 3m và tăng chiều rộng thêm 4m thì diện tích mảnh vườn tăng 12m ² so với dự định .=> (y-3).(x+4)=xy+12
<=> xy +4y-3x-12=xy+12
<=> -3x+4y=24 (2)
Từ (1);(2) ta giải hệ pt được x=12; y=15
Diện tích mảnh vườn bác An dự định ban đầu là x.y=12.15=180 m²
Bài 11 :
Cosi 3 số ta được : \(A\ge3\sqrt[3]{\frac{a}{b}\frac{b}{c}\frac{c}{a}}=3\)
Dấu ''='' xảy ra khi \(a=b=c=1\)
Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)
CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)
\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)
Từ (1); (2) và (3) =>A = \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)
Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)
cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)
Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)
Cho tam giác ABC có đường cao BE, CF. Gọi M,N lần lượt là trung điểm của BE,CF. Kẻ AK⊥EF(K∈EF)
Chứng minh rằng tam giác KMN đồng dạng tam giác ABC.
https://photos.app.goo.gl/hMy2YA1WJeardkva8