Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,: ˆMAI+ˆMEI=180oMAI^+MEI^=180o => tứ giác AMEIAMEI nội tiếp
b, tương tự tứ giác EIBNEIBN nội tiếp =>ˆENI=ˆEIB(=12sdEI)ENI^=EIB^(=12sdEI);
ˆEIN=ˆEBN=12sđEB(1)EIN^=EBN^=12sđEB(1)
tứ guacs AMEIAMEI nội tiếp => ˆMIE=ˆMAE=12sđEA(2)MIE^=MAE^=12sđEA(2)
Từ (1) và (2) =>ˆMIN=12sđAB=90o=>MIN^=12sđAB=90o
c, ΔAMI ΔBIN(.....)ΔAMI ΔBIN(.....)
=>AMBI=AIBN=>=>AMBI=AIBN=> đpcm
a, Ta có : \(\Delta'=\left(m+1\right)^2-\left(2m^2+4m+3\right).2\)
\(=m^2+2m+1-2m^2-8m+6=-m^2-6m+7\)
\(=-m^2-7m+m+7=\left(m+7\right)\left(1-m\right)\)
Để phương trình có 2 nghiệm \(\Rightarrow-7\le m\le1\Rightarrow m=1\)
b, theo vi et mà giải ngại :v
để phương trình có hai nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)\ge0\Leftrightarrow-m^2-6m-5\ge0\Leftrightarrow m\in\left[-5;-1\right]\)
b. để phương trình có hia nghiệm thì \(m\in\left[-5;-1\right]\) khi đó \(\hept{\begin{cases}x_1+x_2=-\frac{2\left(m+1\right)}{2}=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{cases}\Rightarrow M=-m-1-m^2-4m-3=-m^2-5m-4}\)
hay \(M=-\left(m+1\right)\left(m+4\right)=\left(-1-m\right)\left(m+4\right)\le\left(\frac{-1-m+m+4}{2}\right)^2=\frac{9}{4}\)
Dấu bằng xảy ra khi \(-1-m=m+4\Leftrightarrow m=-\frac{5}{2}\)