cho tam giác abc có ab=ac tia phân giác của góc a cắt bc tại d
a) chứng minh \(_{\Delta}\)ABD=\(\Delta\)ACD
b) kẻ DH vuông góc với AB (H\(\in\)AB) DK vuông góc với ac k\(\in\)AC chứng minh AH=AK
C) CHỨNG MINH ĐƯỜNG THẲNG HK SONG SONG VỚI BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x,y là số máy cày của đổi 1 và đội 2
ta có :
\(\hept{\begin{cases}x+y=28\\3x=4y\end{cases}}\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{x+y}{\frac{1}{3}+\frac{1}{4}}=\frac{28}{\frac{7}{12}}=48\)
\(\Rightarrow\hept{\begin{cases}x=16\\y=12\end{cases}}\)
Answer:
Ta gọi số tiền lãi được của cả ba đơn vị lần lượt là a, b, c (a, b, c > 0)
Theo đề ra, ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và \(a+b+c=450\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{450}{15}=30\)
\(\Rightarrow\hept{\begin{cases}a=90\\b=150\\c=210\end{cases}}\)
Gọi số máy của mỗi đội lần lượt là a, b, c, d
Theo đề, ta có: a + b + c + d = 72
Vì số máy và thời gian hoàn thành công việc tỉ lệ nghích với nhau nên ta có: 4a = 6b = 10c = 12d\(\Rightarrow\frac{4a}{120}=\frac{6b}{120}=\frac{10c}{120}=\frac{12d}{120}\Rightarrow\frac{a}{30}=\frac{b}{20}=\frac{c}{12}=\frac{d}{10}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{30}=\frac{b}{20}=\frac{c}{12}=\frac{d}{10}=\frac{a+b+c+d}{30+20+12+10}=\frac{72}{72}=1\)
=> a = 30, b = 20, c = 12, d = 10
Vậy mỗi đội có số máy lần lượt là 30 máy, 20 máy, 12 máy, 10 máy
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC