K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

5+ 2 căn 6 = căn 3 + căn 2
5-  2 căn 6 = căn 3 - căn 2
thay vào rồi bình phương 2 vế là đc bạn nhé

26 tháng 2 2021

xét đường tròn tâm o có

C là điểm chính giữa nằm trên nửa đường tròn

=> cung CA = cung CB     

=> CA=CB       điều 1  ...liên hệ giữa cung và dây

mặt khác.     góc CBNlaf góc nội tiếp chắn cung CN

                    góc NMC là góc nội tiếp chắn cung CN 

=> góc CBN = góc NMC  

lại có cung BN = cung CM 

=> BN=MC

xét tam giác CBN  và Tam giác NMC có

       CN chung

      BN = MC

     góc CBN= góc NMC 

=> 2 tam giác bằng nhau => MN = BC     điều 2

từ 1 và 2 => MN= CA =CB

26 tháng 2 2021

x2 - 2( m + 1 )x + 2m - 4 = 0

1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )

= 4( m + 1 )2 - 8m + 16

= 4( m2 + 2m + 1 ) - 8m + 16

= 4m2 + 8m + 4 - 8m + 16

= 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có nghiệm với mọi m ( đpcm )

2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)

Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)

\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )

\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)

\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)

\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)

\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)

\(=2\left(m+1\right)^2+2m^2+10\)

\(=2\left(m^2+2m+1\right)+2m^2+10\)

\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)

3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((

26 tháng 2 2021

à xin phép em sửa một tí :))

1. ... = 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )

2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...

em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(

26 tháng 2 2021

Gọi số sản phẩm xưởng dự định làm trong 1 ngày là x ( x > 0 )

Thời gian xưởng dự định làm xong 450 sản phẩm = 450/x ( ngày )

Thực tế mỗi ngày phân xưởng làm nhiều hơn 5 sản phẩm => Mỗi ngày phân xưởng làm được x + 5 ( sản phẩm )

Thời gian thực tế xưởng làm xong 450 sản phẩm = 450/(x+5) ( ngày )

Khi đó thời gian xưởng làm xong sớm hơn dự định 3 ngày

=> Ta có phương trình : \(\frac{450}{x}-\frac{450}{x+5}=3\)

<=> \(\frac{450x+2250}{x\left(x+5\right)}-\frac{450x}{x\left(x+5\right)}=\frac{3x^2+15x}{x\left(x+5\right)}\)

=> 450x + 2250 - 450x = 3x2 + 15x

<=> 3x2 + 15x - 2250 = 0

<=> x2 + 5x - 750 = 0 ( đến đây bạn xét Δ rồi áp dụng công thức nghiệm nhé )

=> x1 = 25 ( tm ) hoặc x2 = -30 ( ktm )

Vậy số sản phẩm xưởng dự định làm trong 1 ngày là 25 sản phẩm

26 tháng 2 2021

Vì \(\widehat{ABO}\)là góc tạo bởi tia tiếp tuyến AB và dây cung BD ( đường kính AB )

\(\Rightarrow\widehat{ABO}=\frac{1}{2}.\widehat{BOD}=\frac{1}{2}.180^o=90^o\)

Chứng mình ương tự với \(\widehat{ACO}\), suy ra \(\widehat{ACO}=90^o\)

Xét tứ giác ABOC có : 

Góc ABO và góc ACO là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)

=> Tứ giác ABOC nội tiếp đường tròn ( theo tính chất tổng hai góc đối bằng 180 độ ... )

Gọi I là trung điểm của AB

Có tam giác ABO vuông tại B, trung tuyến là BI

=> BI = 1/2.AO=AI=IO (1)

Tam giác ACO vuông tại C, có trung tuyến là CI

=> CI=1/2.AO=AI=IO (2)

Từ (1) và (2) => BI = AI = IO = IC

=> I cách đều 4 đỉnh tứ giác ABOC 

=> I là tâm đường tròn ngoại tiếp tứ giác ABOC , có bán kinh R= 1/2.AO