K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

\(5x+6y=13\)

\(\Leftrightarrow5x=13-6y\)

\(\Leftrightarrow x=\frac{13-6y}{5}=\frac{15-2-5y-y}{5}=3-y-\frac{y+2}{5}\)

Vì x\(x\in Z\)nên \(3-y-\frac{y+2}{5}\inℤ\)

Mà  \(y\inℤ\)nên \(3-y\inℤ\)Suy ra \(\frac{y+2}{-5}\inℤ\)

\(\frac{y+2}{-5}\inℤ\Leftrightarrow y+2⋮5\)

Đặt \(y+2=5k\left(k\inℤ\right)\)thì \(y=5k-2\)

Do đó:

\(x=3-y-\frac{y+2}{5}=3-5k+2-\frac{5k}{5}=5-5k-k=5-6k\)

Vậy phương trình có tập nghiệm nguyên \(\left(x;y\right)=\left(5k-2;5-6k\right)\)với \(k\inℤ\)

10 tháng 3 2021

(tiếp) Do đó \(x=3-y-\frac{y+2}{5}=3-5k+2-\frac{5k}{5}=5-5k-k=5-6k\)

Vậy phương trình có tập nghiệm \(\left(x;y\right)=\left(5-6k;5k-2\right)\)với \(k\inℤ\)

10 tháng 3 2021

x13+x23=(x1+x2)3-3x1x2(x1+x2)=23-3(-m2-4)2=10

<=> 6m2=-22 <=> m\(\in\varnothing\)

8 tháng 3 2021

m( x- 4x + 3 ) + 2( x - 1 ) = 0

<=> mx2 - 4mx + 3m + 2x - 2 = 0

<=> mx2 - 2( 2m - 1 )x - 2 = 0

ĐKXĐ : m ≠ 0

Δ = b2 - 4ac = [ -2( 2m - 1 ) ]2 + 8

= 4( 2m - 1 )2 + 8

Dễ thấy Δ ≥ 8 > 0 ∀ m

hay pt luôn có nghiệm với mọi m ≠ 0 ( đpcm )

8 tháng 3 2021

a, Ta có : \(A=\frac{\sqrt[]{x}-2}{x+\sqrt{x}+1};x=16\Rightarrow\sqrt{x}=4\)

\(A=\frac{4-2}{16+4+1}=\frac{2}{21}\)

b, Với \(x\ge0;x\ne1\)ta có : 

\(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt[]{x}}\)

\(=\frac{x+2}{\left(\sqrt{x}\right)^2-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

8 tháng 3 2021

Đặt n + 24 = a2

n - 65 = b2

=> a- b= n + 24 - n + 65

=> (a - b)(a + b) = 1 . 89

Vì a - b < a + b

\(\Rightarrow\hept{\begin{cases}a-b=1\\a+b=89\end{cases}}\)  

\(\Rightarrow\hept{\begin{cases}a=45\\b=44\end{cases}}\)

=> n + 24 = 452

=> n = 2001

8 tháng 3 2021

Đặt \(n+24=a^2\)

       \(n-65=b^2\)

\(\Rightarrow a^2-b^2=\left(n+24\right)-\left(n-65\right)\)

\(\Rightarrow a^2-b^2=n+24-n+65\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=1.89\)

Vì \(a-b< a+b\)

\(\Rightarrow\hept{\begin{cases}a-b=1\\a+b=89\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=45\\b=44\end{cases}}\)

\(\Rightarrow n+24=45^2\)

\(\Rightarrow n=2001\)