Để chuẩn bị tham gia Hội khỏe Phù Đổng cấp trường, thầy Thành là giáo viên chủ nhiệm lớp 9A tổ chức cho học sinh trong lớp thi đấu bóng bàn ở nội dung đánh đôi nam nữ (Một nam kết hợp với một nữ). Thầy Thanh chọn \(\dfrac{1}{2}\) số học sinh nam kết hợp với \(\dfrac{5}{8}\) số học sinh nữ để tạo thành các cặp thi đấu. Sau khi đã chọn được số học sinh tham gia thi đấu thì lớp 9A còn lại 16 học sinh làm cổ động viên. Hỏi lớp 9A có bao nhiêu học sinh?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số công nhân dự định là x (người) (x∈N∗)(x∈N∗).
⇒⇒ Năng suất dự định của mỗi người là 300x300x (giỏ tre).
Số công nhân thực tế là x+5x+5 (người) và năng suất của mỗi người là 300x−3300x−3 (giỏ tre).
Thực tế xưởng đó vẫn sản xuất 300 giỏ tre. Khi đó ta có phương trình :
(x+5)(300x−3)=300⇔300−3x+1500x−15=300⇔−3x2−15x+1500=0⇔[x=20(tm)x=−25(ktm)(x+5)(300x−3)=300⇔300−3x+1500x−15=300⇔−3x2−15x+1500=0⇔[x=20(tm)x=−25(ktm)
Vậy dự định ban đầu xưởng đó có 20 công nhân.
Thể tích của bình là 36m³
Giải thích các bước giải:
Đổi 48 phút = 0,8h
Gọi x là thời gian để bơm hết bể của máy 1, y là thời gian để bơm đầy bể của máy 2.
Ta có:
x=V10(h)y=V15(h)x=V10(h)y=V15(h)
Từ giả thiết đề bài ta lập được phương trình sau:
13x+23y=x−0,8⇔23x−23y=0,8⇔x−y=1,2⇔V10−V15=1,2⇔V=36m3
Gọi số sản phẩm người đó làm được trong mỗi giờ là xx (sản phẩm)
Vậy thời gian người đó làm là 84x84x (h)
Lại có mỗi giờ làm đc nhiều hơn 2 sản phẩm nên khi đó thời gian là 84x+284x+2(h)
Khi đó công việc hoàn thành sớm hơn dự định 1h nên ta có
84x=84x+2+184x=84x+2+1
<−>84(x+2)x(x+2)=84xx(x+2)+1<−>84(x+2)x(x+2)=84xx(x+2)+1
<−>84x+168=84x+x(x+2)<−>84x+168=84x+x(x+2)
<−>x2+2x−168=0<−>x2+2x−168=0
<−>(x−12)(x+14)=0<−>(x−12)(x+14)=0
Vậy x=12x=12 hoặc x=−14x=−14 (loại)
Do đó mỗi giờ người công nhân phải làm 12 sản phẩm.
Gọi số cây mỗi HS dự định trồng là x (cây). Đk: x > 0, x nguyên.
Số Hs là 200x200x em
Số cây thực tế mỗi em trồng là x + 5 cây
Số Hs thực tế là: 200x+5200x+5
Theo bài ra ta có pt:
200x200x - 200x+5200x+5 = 2
Giải pt ta được x = - 25 (loại) và x = 20 (nhận)
Vậy số HS thực tế đã tham gia là: 2002520025 = 8 em
gọi số tấn của mỗi xe dự định chở là x(x>0)( tấn)
do đó, số tấn mỗi xe phải chở lúc thực hiện là x-1 (tấn)
số xe dự định ban đầu là 120/x (xe)
số xe lúc thực hiện là 120/x +4 (xe)
theo đề ra ta có:
(120/x +4).(x-1)=120
⇔120-120/x +4x-4=120
⇔4x-120/x=4
⇔ 4x²-120=4x
⇔x²-x-30=0
⇔x=6( thỏa mãn) hoặc x=-5(loại vì x>0)
vậy mỗi xe dự định chở 6 tấn
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có 240x240xghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=> (240x+1)(x+3)=315⇔240+720x+x+3=315(240x+1)(x+3)=315⇔240+720x+x+3=315
⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0
Δ′=(−36)2−720=576Δ′=(−36)2−720=576
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
Gọi số dãy ghế ban đầu là: x ( 0 < x; x thuộc Z)
Mỗi ghế có y người (0 < y; y thuộc Z)
Vì có 80 người nên ta có x.y = 80 (1)
Nếu bớt 2 ghế thì còn x - 2 ghế. Khi đó mỗi ghế phải thêm 2 người nên có y + 2 người
Ta có PT: (x - 2)(y + 2) = 80 (2)
Giải hệ gồm PT (1) và (2) ta được x = 10; y = 8
Gọi số học sinh của lớp 9A là x (học sinh), số học sinh lớp 9B là y (học sinh) (ĐK: x,y∈N∗x,y∈N∗)
Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)
Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 4y (quyển)
Từ đó ta có:
Số sách giáo khoa cả hai lớp đã ủng hộ là 6x+5y6x+5y (quyển)
Số sách tham khảo cả hia lớp đã ủng hộ là 3x+4y3x+4y (quyển)
Vì cả hai lớp ủng hộ 738 quyển nên ta có phương trình6x+5y+3x+4y=9x+9y=738(1)6x+5y+3x+4y=9x+9y=738(1)
Và số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình (6x+5y)−(3x+4y)=3x+y=166(2)(6x+5y)−(3x+4y)=3x+y=166(2)
Từ (1) và (2) ta có hệ phương trình
{9x+9y=7383x+y=166⇔{x+y=823x+y=166⇔{2x=84y=82−x⇔{x=42(tm)y=40(tm){9x+9y=7383x+y=166⇔{x+y=823x+y=166⇔{2x=84y=82−x⇔{x=42(tm)y=40(tm)
Vậy số học sinh của lớp 9A là 42 học sinh, số học sinh lớp 9B là 40 học sinh.
Gọi số học sinh của lớp 9A,9C9A,9C lần lượt là x,yx,y ( học sinh ) (ĐK:x,y>0(ĐK:x,y>0
Theo bài ra ta có :
{Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển)Số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển){Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển)Số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)
{Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) Số sách tham khảo mà lớp 9C ủng hộ là 4y (quyển){Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) Số sách tham khảo mà lớp 9C ủng hộ là 4y (quyển)
⇒⇒ {Tổng số sách giáo khoa cả 2 lớp ủng hộ là : 6x+5y (quyển)Tổng số sách tham khảo cả 2 lớp ủng hộ là : 3x+4y (quyển){Tổng số sách giáo khoa cả 2 lớp ủng hộ là : 6x+5y (quyển)Tổng số sách tham khảo cả 2 lớp ủng hộ là : 3x+4y (quyển)
+)+) Cả 22 lớp ủng hộ thư viện 738738 quyển sách nên ta có phương trình.
6x+5y+3x+4y=7386x+5y+3x+4y=738
⇔9x+9y=738⇔9x+9y=738
⇔x+y=82⇔x+y=82 (1)(1)
+)+) Số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166166 quyển nên ta có phương trình.
(6x+5y)−(3x+4y)=166(6x+5y)-(3x+4y)=166
⇔3x+y=166⇔3x+y=166 (2)(2)
Từ (1);(2)⇒(1);(2)⇒ {x+y=823x+y=166{x+y=823x+y=166
⇔⇔{3x+3y=246(3)3x+y=166(4){3x+3y=246(3)3x+y=166(4)
Lấy (3)−(4)(3)-(4) ta được : 3x+3y−(3x+y)=246−1663x+3y-(3x+y)=246-166
⇔2y=80⇔2y=80
⇔y=40(TM)⇔y=40(TM)
(3)⇒x=42(TM)(3)⇒x=42(TM)
Vậy: Số học sinh của lớp 9A9A là 4242 hs
Số học sinh của lớp 9C9C là 4040 hs
Gọi vận tốc của vật chuyển động nhanh là x (cm/s)x (cm/s) và vận tốc của vật chuyển động chậm hơn là y (cm/s).y (cm/s). (x>y>0).(x>y>0).
Chu vi của đường tròn là: S=2π.20=40π cm.S=2π.20=40π cm.
Khi chuyển động cùng chiều thì sau 20 giây chúng lại gặp nhau tức là vật chuyển động nhanh sẽ đi nhanh hơn vật chuyển động chậm 1 vòng. Khi đó ta có phương trình:
20x−20y=40π⇔x−y=2π. (1)20x−20y=40π⇔x−y=2π. (1)
Nếu chúng chuyển động ngược chiều thì cứ 4 giây chúng lại gặp nhau tức là sau 4 giây thì tổng quãng đường hai vật đi được bằng 1 vòng tròn. Khi đó ta có phương trình:
4x+4y=40π⇔x+y=10π. (2)4x+4y=40π⇔x+y=10π. (2)
Từ (1) và (2) ta có hệ phương trình:
{x−y=2πx+y=10π⇔{x=6π(tm)y=4π(tm).{x−y=2πx+y=10π⇔{x=6π(tm)y=4π(tm).
Vậy vận tốc của vật chuyển động nhanh là 6π cm/s6π cm/s và vận tốc của vật chuyển động chậm hơn là 4π cm/s
Vậy vận tốc hai vật lần lượt là 6pikm/h và 4π4π km/h.
Gọi x,y lần lượt là số học sinh nam và nữ của lớp 9A
Điều kiện: x,y>0; x,y nguyên
1212số học sinh nam của lớp 9A là 12x12x(học sinh)
5858số học sinh nữ của lớp 9A là 58y58y(học sinh)
Tổng số học sinh của lớp 9A là: (12x+58y)(12x+58y)học sinh
để tham gia các cặp thi đấu thì số hộc sinh nam phải bằng số học sinh nữ nên ta có: 12x=58y12x=58y(1)
Số học sinh còn lại của lớp 9A là 16 học sinh nên:(x+y)−(12x+58y)=16(x+y)−(12x+58y)=16 (2)
Từ (1) và (2) ta có hệ phương trình\hept⎧⎨⎩12x=58y(x+y)−(12x+58y)=16⇒\hept{x=20y=16\hept{12x=58y(x+y)−(12x+58y)=16⇒\hept{x=20y=16
Vậy lớp 9A có tất cả 36 học sinh