cho hình bình hành ABCD.Gọi E,F,G,H lần lượt thuộc cạnh AB,CD,EG,HF sao cho BE=DG,BF=DH.Chứng minh
a)EFGH là hình bình hành
b)các đường thẳng AC,DB,EG,HF đồng quy
ai đang online thì giúp mình với nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng chiều dài và chiều rộng hcn là 2p : 2 = p
Gọi chiều dài hcn là x
=> chiều rộng hcn là: p - x
Diện tích hcn ban đầu là: x(p - x) = xp - x2
Diện tích hcn lúc sau là: (x +a). (p - x + a) = xp - x2 + ax + ap - ax + a2 = (xp - x2) + (ap + a2)
Vậy diện tích hcn tăng ap + a2 (đơn vị diện tích)
Cô Loan ơi, em tưởng nó tăng lên 1 số cụ thế -_-, em cứ tưởng em lm sai
canh đối hbh thi bang nhau con canh cua hinh vuong thi 4 canh bang nhau
ứ giác ABCD có :
ˆB=ˆA+10B^=A^+10(1)(1)
ˆC=ˆB+10C^=B^+10
Thay (1) vào ( 2) ⇒ˆC−10=ˆA+10⇒ˆC=200+ˆA⇒C^−10=A^+10⇒C^=200+A^(2)
ˆD=ˆC+10=200+A+10=300+AD^=C^+10=200+A+10=300+A(3)
(1),(2),(3) =>A+B+C+D=360=>ˆA+10+ˆA+20+ˆA+30+ˆA=360=>4ˆA+60=360=>ˆA=750A+B+C+D=360=>A^+10+A^+20+A^+30+A^=360=>4A^+60=360=>A^=750
=>ˆB=85.;ˆC=950;ˆD=1050=>B^=85.;C^=950;D^=1050.
a) x^2 + 4y^2 + 6x - 12y + 18 = 0
<=>x2+6x+9+4y2-12y+9=0
<=>(x+3)2+(2y-3)2=0
<=>x+3=0 và 2y-3=0
<=>x=-3 và y=3/2
b) 5x^2 +9y^2 - 12xy - 6x +9 = 0
<=>x2-6x+9+4x2-12xy+9y2=0
<=>(x-3)2+(2x-3y)2=0
<=>x-3=0 và 2x-3y=0
<=>x=3 và 2.3-3y=0
<=>x=3 và y=2
(x+y+z)^2=0
x^2+y^2+z^2+2xy +2yz+2xz=0
x^2+y^2+z^2+2(xy+yz+xz)=0
Vì xy + yz +xz=0 nên x^2+y^2+z^2=0.
Vì x^2, y^2, z^2 luôn lớn hơn hoặc bằng 0 mà x^2+y^2+z^2=0.Vì vậy:
x^2=0, y^2=0, z^2=0
x=y=z=0
Thay x=y=z=o vào S ta được: S=1
a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
BE = DG (chứng minh trên)
B^=D^ (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...
cho hình bình hành ABCD.Gọi E,F,G,H lần lượt thuộc cạnh AB,CD,EG,HF sao cho BE=DG,BF=DH.Chứng minh
a)EFGH là hình bình hành
b)các đường thẳng AC,DB,EG,HF đồng quy
a) Ta có: AE = CG (giả thiết) mà AB = CD (cạnh đối của hình bình hành ABCD), suy ra BE = DG.
△BEF và △DGH có:
BE = DG (chứng minh trên)
B^=D^ (hai góc đối của hình bình hành ABCD)
do đó: △BEF = △DGH (c.g.c), suy ra EF = GH.
Chứng minh tương tự, ta có: EH = FG.
Tứ giác EFGH có các cạnh đối bằng nhau nên là hình bình hành.
b) Tứ giác ABCD là hình bình hành ...
đúng không ?