Cho (O;R) đường kính AB cố định.Dây AC tùy ý.
a, Biết khoảng cách từ O đến dây BC và AC lần lượt bằng 6 cm và 8cm.Tính AC,BC và bán kính R của (O)
b, Lấy điểm D thuộc tia đối cảu tia CA sao cho CD= AC.Tìm tập hợp trọng tâm G của tam giác ABD khi C di chuyển trên (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2\\x_1x_2=\frac{c}{a}=-12\end{cases}}\)
mà : \(3x_1-x_1x_2+3x_2\Leftrightarrow3\left(x_1+x_2\right)-x_1x_2\)
\(\Leftrightarrow3.\left(-2\right)-\left(-12\right)=-6+12=6\)
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
Khi đó : 3x1 - x1x2 + 3x2 = 3( x1 + x2 ) - x1x2 = -3b/a - c/a = -3b-c/a = -6+12/1 = 6
\(\sqrt{x}+\sqrt{x+5}=y\)
\(\Leftrightarrow2x+5+2\sqrt{x^2+5x}=y^2\)
\(\Leftrightarrow2\sqrt{x^2+5x}=y^2-2x-5\)
Ta có VP là số nguyên nên VT cũng phải là số nguyên
\(\Rightarrow x^2+5x=a^2\)(với a là số nguyeenÐ
\(\Leftrightarrow4x^2+20x=4a^2\)
\(\Leftrightarrow\left(2x+5\right)^2-25=a^2\)
\(\Leftrightarrow\left(2x+5-a\right)\left(2x+5+a\right)=25\)
Đơn giản rồi làm nốt nhá
a, \(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Rightarrow\sqrt{x}-2< 0\)( vì \(\sqrt{x}+1>0\))
\(\Rightarrow\sqrt{x}>2\Rightarrow x>4\)
Vậy với P < 0 thì x > 4
b, \(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\ge1\)
Dấu bằng xảy ra khi \(\sqrt{x}+1>0\)
Tìm min:
Theo BĐT AM-GM thì: P=a2+b2+c2≥ab+bc+acP=a2+b2+c2≥ab+bc+ac hay P≥9P≥9
Vậy Pmin=9Pmin=9. Giá trị này đạt tại a=b=c=√3a=b=c=3
-----------
Tìm max:
P=a2+b2+c2=(a+b+c)2−2(ab+bc+ac)=(a+b+c)2−18P=a2+b2+c2=(a+b+c)2−2(ab+bc+ac)=(a+b+c)2−18
Vì a,b,c≥1a,b,c≥1 nên:
(a−1)(b−1)≥0⇔ab+1≥a+b(a−1)(b−1)≥0⇔ab+1≥a+b
Hoàn toàn tương tự: bc+1≥b+c;ac+1≥a+cbc+1≥b+c;ac+1≥a+c
Cộng lại: 2(a+b+c)≤ab+bc+ac+3=122(a+b+c)≤ab+bc+ac+3=12
⇒a+b+c≤6⇒a+b+c≤6
⇒P=(a+b+c)2−18≤62−18=18⇒P=(a+b+c)2−18≤62−18=18
Vậy Pmax=18Pmax=18. Giá trị này đạt tại (a,b,c)=(1,1,4)(a,b,c)=(1,1,4) và hoán vị
\(4P=\frac{8x^2+4y^2-8xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+\left(7x^2-4xy\right)}{xy}\)
\(=\frac{\left(x-2y\right)^2+\left(14xy-4xy\right)}{xy}\ge10\)
\(\Rightarrow P\ge\frac{10}{4}=\frac{5}{2}\)
Dấu = xảy ra khi x = 2y