Chứng minh rằng biểu thức n( 2n - 3) - 2n(n + 1) luôn chia hết cho 5 với mọi số nguyên n
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NN
0


13 tháng 9 2015
ta có a = 3. q + 1 ( q là số tự nhiên)
b = 3 . p + 2 ( p là số tự nhiên)
a.b = (3q + 1)(3p + 2)
= 9qp + 6q + 3p + 2
tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.
DL
1

13 tháng 9 2015
x^2 - 4x + 1 = x^2 - 4x + 4 - 3 = ( x- 2 )^2 - 3
Vậy GTnn là 3 khi x = 2
K
0

DT
0

lười Học