# giúp em gấp ạ
# em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một tam giác có độ dài 3 cạnh là bao nhiêu thì đó là tam giác vuông:
A. 2cm; 4cm; 6cm.
B. 3cm; 4cm; 2cm.
C. 5cm; 3cm; 4cm.
D. 2cm; 3cm; 5cm
Giải thích Vì 32+42=9+16=25
52=25
=>32+42=52
=>Tam giác đó vuông(Định lý Py-ta-go đảo)
Một tam giác có độ dài 3 cạnh là bao nhiêu thì đó là tam giác vuông:
A. 2cm; 4cm; 6cm.
B. 3cm; 4cm; 2cm.
C. 5cm ; 3cm ; 4cm
D. 2cm; 3cm; 5cm
GIẢI THÍCH VÌ 32 + 42 = 9 + 16 = 25
52 = 25
=> 32 + 42 = 52
a, Xét tam giác ABD và tam giác ACD
AB = AC ; BD = DC ; AD_chung
Vậy tam giác ABD = tam giác ACD (c.c.c)
b, Xét tam giác ABC cân tại A, có D là trung điểm BC
=> AD là đường trung tuyến đồng thời là đường cao
đồng thời là đường pg
=> AD vuông BC
c, Vì D là trung điểm BC => BD = CD = BC/2 = 6 cm
Theo định lí Pytago tam giác ADB vuông tại D
\(AD=\sqrt{AB^2-BD^2}=8cm\)( do AB = AC, tam giác ABC cân tại A)
d, Xét tam giác AED và tam giác AFD có
AD _ chung
^EAD = ^FAD ( do AD là đường pg)
Vậy tam giác AED = tam giác AFD (ch-gn)
=> ED = FD (2 cạnh tương ứng)
Xét tam giác DEF có ED = FD (cmt)
Vậy tam giác DEF cân tại D
a) Áp dụng Pytago dễ dàng tính được AC=4
b) Xét hai tam giác vuông ABD và HBD có
BD cạnh chung
góc ABD = góc HBD (BD là phân giác góc B)
Nên hai tam giác trên bằng nhau (cạnh huyền - góc nhọn)
Suy ra AB = BH
AD = DH
Suy ra BD là trung trực của AH (định lý 2)
c) Ý bạn là E là giao điểm của AH và BD?
Hay E là giao điểm của DH và AB?
Ta có: \(6x^2+5y^2=74>6x^2\Leftrightarrow x^2< \dfrac{37}{3}\Leftrightarrow x^2\in\left\{0,1,4,9\right\}\)
\(x^2=0\Rightarrow x=0\) thay x=0 pt ta có:
\(6x^2+5y^2=74\\ \Leftrightarrow6.0^2+5y^2=74\\ \Leftrightarrow5y^2=74\\ \Leftrightarrow y^2=\dfrac{74}{5}\left(ktm\right)\)
\(x^2=1\Leftrightarrow x=\pm1\) thay x=\(\pm1\) pt ta có:
\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm1\right)^2+5y^2=74\\ \Leftrightarrow6+5y^2=74\\ \Leftrightarrow y^2=\dfrac{68}{5}\left(ktm\right)\)
\(x^2=4\Leftrightarrow x=\pm2\) thay x=\(\pm2\) pt ta có:
\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm2\right)^2+5y^2=74\\ \Leftrightarrow6.4+5y^2=74\\ \Leftrightarrow24+5y^2=74\\ \Leftrightarrow y^2=10\left(ktm\right)\)
\(x^2=9\Leftrightarrow x=\pm3\) thay x=\(\pm3\) vào pt ta có:
\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm3\right)^2+5y^2=74\\ \Leftrightarrow6.9+5y^2=74\\ \Leftrightarrow54+5y^2=74\\ \Leftrightarrow y^2=4\\ \Leftrightarrow y=\pm2\)
Vậy \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(-3;2\right);\left(3;-2\right);\left(3;2\right)\right\}\)
Ta có:
\(6\left(x^2-4\right)=5\left(10-y^2\right)\left(1\right)\)
\(\Rightarrow6\left(x^2-4\right)⋮5\Leftrightarrow\left(6;5\right)=1\)
\(\Rightarrow x^2-4⋮5\Leftrightarrow x^2=5k+4\left(k\inℕ\right)\)
Đặt \(\left(1\right)=x^2-4=5k\)ta lại có:
\(\Rightarrow y^2=10-6k\)
Mà \(\hept{\begin{cases}x^2>0\\y^2>0\end{cases}}\Rightarrow\hept{\begin{cases}5k+4>0\\10-6k>0\end{cases}}\)
\(\Rightarrow-\frac{4}{5}< k< \frac{5}{3}\Leftrightarrow\orbr{\begin{cases}k=0\left(loại\right)\\k=1\end{cases}}\)
\(k=1\Leftrightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm3\\y=\pm2\end{cases}}\)
Vậy cặp \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(3;2\right)\right\}\)
\(=6x^5y^4z^3\)