8: Giải phương trình (𝑥 + 1)√𝑥 2 − 2𝑥 + 3 = 𝑥 2 + 1 . Tính tổng bình phương các nghiệm A. 6 B. 3 + √8 C. 8 D. 4 + √12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD là đường cao từ A xuống BC
phần a khỏi bàn
b) \(\widehat{MBC}=\widehat{MAC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)
\(\widehat{MAC}=\widehat{EBC}\)( vì AEBD nội tiếp )
\(\Rightarrow BC\)là phân giác
a) \(P=\frac{x}{x-4}+\frac{\sqrt{x}}{x+2\sqrt{x}}-\frac{1}{x-2\sqrt{x}}\)
\(=\frac{x\sqrt{x}}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right).\sqrt{x}}+\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right).\sqrt{x}}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right).\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right).\sqrt{x}}\)
\(=\frac{x-\sqrt{x}-1}{x-2\sqrt{x}}\)
b) Nếu \(x>4\)thì ta dễ thấy \(x-\sqrt{x}-1>0,x-2\sqrt{x}>0\)nên \(P>0\).
Ta thử các trường hợp \(x\)nguyên, \(0< x< 4\)ta chỉ thấy \(x=3\)thỏa mãn \(P< 0\).
\(\hept{\begin{cases}5x+3y=2\\15x+8y=3\end{cases}}\)
\(< =>\hept{\begin{cases}15x+9y=6\\15x+8y=3\end{cases}}\)
\(< =>\hept{\begin{cases}x=6-3=3\\5x+3y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=3\\15+3y=2\end{cases}}\)
\(< =>\hept{\begin{cases}x=3\\y=-\frac{13}{3}\end{cases}}\)
ngáo rồi :(((
Dòng 2 \(< =>\hept{\begin{cases}y=3\\5x+3y=2\end{cases}}\)
\(< =>\hept{\begin{cases}y=3\\5x=-7\end{cases}< =>\hept{\begin{cases}x=-\frac{7}{5}\\y=3\end{cases}}}\)
CÂU 6:
\(P=2x+3y+\frac{6}{x}+\frac{10}{y}\)
\(=\left(\frac{6}{x}+\frac{3}{2}x\right)+\left(\frac{10}{y}+\frac{5}{2}y\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{6}{x}.\frac{3}{2}x}+2\sqrt{\frac{10}{y}.\frac{5y}{2}}+\frac{1}{2}\left(x+y\right)\)( BĐT cô si )
\(\ge6+10+2=18\)( do \(x+y\ge4\)
Dấu "=" xảy ra <=>x=y=2
Vậy Min P=18 <=> x=y=2
a) đk: \(\hept{\begin{cases}a>b\\a< -b\end{cases}}\left(b>0\right)\) hoặc \(\hept{\begin{cases}a>-b\\a< b\end{cases}\left(b< 0\right)}\)
Ta có:
\(B=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right)\div\frac{b}{a-\sqrt{a^2-b^2}}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}\cdot\frac{a-\sqrt{a^2-b^2}}{b}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}=\frac{a-b}{\sqrt{a^2-b^2}}=\sqrt{\frac{a-b}{a+b}}\)
b) \(B< 1\Leftrightarrow\sqrt{\frac{a-b}{a+b}}< 1\Leftrightarrow\frac{a-b}{a+b}< 1\)
\(\Leftrightarrow\frac{-2b}{a+b}< 0\) ta xét 2TH:
Nếu \(b>0\Rightarrow a>-b\)
Nếu \(b< 0\Rightarrow a< -b\)
Vậy ...
Gọi vận tốc thực của cano là x( km/h) ĐK: \(x>4\)
Ta có: \(\hept{\begin{cases}V_{xuoidong}=x+4\left(km/h\right)\\V_{nguocdong}=x-4\left(km/h\right)\end{cases}}\)
Thời gian ca nô đi xuôi dòng là \(\frac{80}{x+4}\left(h\right)\)
Thời gian ca nô đi ngược dòng là\(\frac{80}{x-4}\left(h\right)\)
Theo bài ra ta có pt sau : \(\frac{80}{x+4}=\frac{80}{x-4}-\frac{1}{2}\)
\(\Leftrightarrow80\left(\frac{1}{x+4}-\frac{1}{x-4}\right)=\frac{-1}{2}\)
\(\Leftrightarrow\frac{-8}{x^2-16}=\frac{-1}{160}\)
\(\Rightarrow x^2-16=1280\)
\(\Leftrightarrow x^2=1296\)
\(\Leftrightarrow\orbr{\begin{cases}x=36\left(tm\right)\\x=-36\left(loai\right)\end{cases}}\)
Vậy vận tốc thực của ca nô là 36km/h
\(\Delta=\left(-2m\right)^2-4.\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(\Delta'=m^{^2}-2m+3\)
\(=\left(m-1\right)^2+2\)
ĐKXĐ: x \(\ge\)1/2
Đặt: \(x+3=a\left(a>0\right)\)
\(\sqrt{2x-1}=b\) (b \(\ge\)0)
=> 3a + b2 = 3x + 9 + 2x - 1 = 5x + 8 => 5x - 1 = b2 + 3a - 9
Do đó, ta có: b2 + 3a - ab - 9 = 0
<=> (b - 3)(b + 3) - a(b - 3) = 0
<=> (b - 3)(b - a + 3) = 0
<=> \(\orbr{\begin{cases}b=3\\b-a+3=0\end{cases}}\)
Với b = 3=> \(\sqrt{2x-1}=3\)=> 2x - 1 = 9 => x = 5 (tm)
với b - a + 3 = 0 => \(\sqrt{2x-1}-x-3+3=0\)
<=> \(\sqrt{2x-1}=x\) (x \(\ge\)1/2)
<=> 2x - 1 = x2 <=> (x - 1)2 = 0 <=> x = 1 (tm)
Vậy S = {1; 5}