K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

sao cô cho cả đáp án ra lun thế ạ @@

16 tháng 5 2021

à ko em nhầm nhầm em xin lỗi cô 

16 tháng 5 2021

vào tìm kiems có câu tương tự nhé

25 tháng 5 2021

\(M=9x^2-6x+1+x+\frac{1}{9x}+2019\)

\(M=\left(3x-1\right)^2+x+\frac{1}{9x}+2019\ge\left(3x-1\right)^2+\frac{2}{3}+2019\left(AM-GM\right)\)

\(MinM=\frac{6059}{3}\)

Đẳng thức xảy ra khi x=1/3

DD
16 tháng 5 2021

ĐK: \(x\ge2\).

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)

\(\Leftrightarrow\sqrt{x-2}-3\sqrt{x-2}\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\sqrt{x-2}=0\)(vì \(x\ge2\)thì \(1-3\sqrt{x+2}< 0\)

\(\Leftrightarrow x=2\)

DD
16 tháng 5 2021

\(\hept{\begin{cases}x^2+y^2=5\\x^2+xy+1=2x+y\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=5\left(-x^2-xy+2x+y\right)\\1=-x^2-xy+2x+y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x^2+y^2+5xy-10x-5y=0\\1=-x^2-xy+2x+y\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(3x+y-5\right)\left(2x+y\right)=0\\1=-x^2-xy+2x+y\end{cases}}\)

Với \(3x+y-5=0\Leftrightarrow y=5-3x\)ta có: 

\(x^2+\left(5-3x\right)^2=5\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=2\\x=2\Rightarrow y=-1\end{cases}}\)

Với \(2x+y=0\Leftrightarrow y=-2x\)ta có: 

\(x^2+\left(-2x\right)^2=5\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=-2\\x=-1\Rightarrow y=2\end{cases}}\)

16 tháng 5 2021

Cách 2:phân tích cái pt 2 ra nhân tử

\(x^2+xy+1=2x+y\)

\(\Leftrightarrow\left(x-1\right)^2+y\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1+y\right)=0\)

...

DD
16 tháng 5 2021

a) \(BEFI\)nội tiếp vì \(\widehat{BEF}=\widehat{BIF}=90^o\).

b) \(\widehat{ADC}\)là góc nội tiếp chắn cung \(\widebat{AC}\).

\(\widehat{CBE}\)là góc nội tiếp chắn cung \(\widebat{CE}\).

\(\widebat{AC}=\widebat{CE}\)suy ra \(\widehat{ADC}=\widehat{CBE}\).

16 tháng 5 2021

\(\sqrt{x^2-4x+5}=x-1\)

ĐK : x ≥ 1

=> x2 - 4x + 5 = x2 - 2x + 1

<=> -2x = -4 <=> x = 2 (tm)

Vậy phương trình có nghiệm x = 2

DD
16 tháng 5 2021

\(\sqrt{x^2-4x+5}=x-1\)(ĐK: \(x\inℝ\)

\(\Leftrightarrow\hept{\begin{cases}x^2-4x+5=\left(x-1\right)^2\\x-1\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-2x=-4\\x\ge1\end{cases}}\)

\(\Leftrightarrow x=2\).

16 tháng 5 2021

Ta có: \(P=\sqrt{a^2+a}+\sqrt{b^2+b}+\sqrt{c^2+c}\)

\(=\sqrt{a\left(a+1\right)}+\sqrt{b\left(b+1\right)}+\sqrt{c\left(c+1\right)}\)

\(=\frac{1}{2}\left[\sqrt{4a\left(a+1\right)}+\sqrt{4b\left(b+1\right)}+\sqrt{4c\left(c+1\right)}\right]\)

\(\le\frac{1}{2}\left(\frac{4a+a+1}{4}+\frac{4b+b+1}{4}+\frac{4c+c+1}{4}\right)\)

\(=\frac{1}{2}\cdot\frac{5\left(a+b+c\right)+3}{4}=\frac{1}{2}\cdot4=2\)

Dấu "=" xảy ra khi: a = b = c = 1/3

Lại có: \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a\ge a^2\\b\ge b^2\\c\ge c^2\end{cases}}\)

\(\Rightarrow P\ge\sqrt{a^2+a^2}+\sqrt{b^2+b^2}+\sqrt{c^2+c^2}=\sqrt{2}\left(a+b+c\right)=\sqrt{2}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=1\\b=c=0\end{cases}}\) và các hoán vị

5 tháng 6 2021

1, vì ME vuông góc vs AB tại E ⇒AEM=90\(^0\)(1))

   vì MF vuông góc vs AC tại F ⇒AFM=90\(^0\)(2)

lại có:A là điểm chính giữa cảu cug BC ⇒góc AOM =90\(^0\)(3)

từ (1),(2),(3)⇒góc AME=góc AFM=góc AOM(=90\(^0\)) cùng nhìn cạnh AM

⇒năm điểm A,E,F,O,M cùng nằm trên một đường tròn

 

16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)

Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành 

\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)

Vậy ... 

4 tháng 6 2021

1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)       ĐKXĐ:x≥o,y≠1

\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)

vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)

2,a, xét pthđgđ của (d) và (p) khi m=3:

x\(^2\)=3x-1⇔\(x^2-3x+1=0\)

Δ=(-3)\(^2\)-4.1.1=5>0

⇒pt có 2 nghiệm pb

\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)

thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))

thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

b,xét pthđgđ của (d) và (p) :

\(x^2=mx-1\)\(x^2-mx+1=0\) (*)

                       Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4

⇒pt có hai nghiệm pb⇔Δ>0

                                  ⇔m\(^2\)-4>0⇔m>16

với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)

theo hệ thức Vi-ét ta có:

(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)

\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3

\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)

thay  (I) vào (**) ta được:

1.m=3⇔m=3 (TM m≠0)

vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3