cho pt x2 - (m-1)x - m2 -2 =0
a) GPT voi m = -2
b) CM pt luon co 2 nghien cua phan biet trai dau
thanks~ (~3~)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 là mình đặt x = 0 rồi y = 0 nhé, đặt số nào cũng được nha nhưng mình chọn số 0 vì nó dễ :v nên mn đừng thắc mắc nhá
Bài 2 :
Để pt có 2 nghiệm pb nên \(\Delta>0\)hay
\(\left(1-m\right)^2-4\left(-m\right)=m^2-2m+1+4m=\left(m+1\right)^2>0\)
\(\Leftrightarrow m>-1\)
Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m-1\\x_1x_2=\frac{c}{a}=-m\end{cases}}\)
Ta có : \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\Leftrightarrow5x_1-x_1x_2\ge15-5x_2-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\Leftrightarrow5m-5+m\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)kết hợp với đk vậy \(m>-1\)
\(2x^2+3x-5=0\)
\(< =>2x^2-2x+5x-5=0\)
\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(2x+5\right)=0\)
\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)
\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)
Bài rõ ez mà cx hỏi
Gọi chiều dài là x (x,y>0)
chiều rộng là y
Ta có hpt
\(\hept{\begin{cases}x.y=360\\\left(x-6\right).\left(y+2\right)=360\end{cases}}\)
\(=>\hept{\begin{cases}x=\frac{360}{y}\\\left(\frac{360}{y}-6\right)\left(y+2\right)=360\end{cases}}\)
=> \(=360+\frac{720}{y}-6y-12=360\)
\(=>-6y^2-12y+720=0\)
=>y=10
=> x=36
Theo định lí Pythagore:
\(BC^2=AB^2+AB^2=3^2+4^2=25\Rightarrow BC=5\).
Ta có: \(R=\frac{abc}{4S_{ABC}}=\frac{3.4.5}{4.\frac{3.4}{2}}=\frac{5}{2}\)
\(S_{ngt}=\pi R^2=\left(\frac{5}{2}\right)^2\pi=\frac{25}{4}\pi\).
\(2x^2+\left(2m-1\right)x+m-1=0\)
\(\Delta=\left(2m-1\right)^2-4.2\left(m-1\right)=4m^2-12m+5\)
Để phương trình đã cho có hai nghiệm phân biệt \(x_1,x_2\)thì \(\Delta\ge0\)
\(\Rightarrow4m^2-12m+5\ge0\Leftrightarrow\left(2m-5\right)\left(2m-1\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le\frac{1}{2}\\m\ge\frac{5}{2}\end{cases}}\).
Khi phương trình có hai nghiệm phân biệt, theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\).
Ta có hệ: \(\hept{\begin{cases}3x_1-4x_2=11\\x_1+x_2=\frac{1-2m}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x_1-4x_2=11\\4x_1+4x_2=2-4m\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_2=\frac{-19-6m}{14}\end{cases}}\)
\(x_1x_2=\frac{13-4m}{7}.\frac{-19-6m}{14}=\frac{m-1}{2}\Leftrightarrow\orbr{\begin{cases}m=-2\left(tm\right)\\m=\frac{33}{8}\left(tm\right)\end{cases}}\)
Để hàm số trên đồng biến khi
\(1-m^2>0\Leftrightarrow m^2< 1\Leftrightarrow-1< m< 1\)
Kết hợp với đk vậy \(-1< m< 1\)
câu a thay m=2 giải phương trình như bình thường
câu b ta thấy a.c = -(m2 +2) < 0
=> Phương trình luôn có 2 nghiệm trái dấu
thanks~