Tìm $x$, biết :
a) $-1,62+\dfrac{2}{5}+x=7$
b) $4 \dfrac{3}{5}-x=\dfrac{-1}{5}+\dfrac{1}{2}$
c) $\dfrac{-4}{7}-x=\dfrac{3}{5}-2 x$
d) $\dfrac{5}{7}-\dfrac{1}{13}+0,25=3 \dfrac{1}{2}-x$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
a)\left(\dfrac{1}{2}+1,5\right) \cdot x=\dfrac{1}{5}(21+1,5)⋅x=51
2 \cdot x=\dfrac{1}{5}2⋅x=51
x=\dfrac{1}{5}: 2x=51:2
x=\dfrac{1}{10} x=101
b) \left(-1 \dfrac{3}{5}+x\right): \dfrac{12}{13}=2 \dfrac{1}{6}(−153+x):1312=261
-1 \dfrac{3}{5}+x=\dfrac{13}{6} \cdot \dfrac{12}{13}−153+x=613⋅1312
x=2+1 \dfrac{3}{5}x=2+153
x=3 \dfrac{3}{5} x=353
c) \left(x: 2 \dfrac{1}{3}\right) \cdot \dfrac{1}{7}=\dfrac{-3}{8}(x:231)⋅71=8−3
x \cdot \dfrac{3}{7} \cdot \dfrac{1}{7}=\dfrac{-3}{8}x⋅73⋅71=8−3
x=\dfrac{-3}{8}: \dfrac{3}{49}x=8−3:493
x=\dfrac{-49}{8}=-6 \dfrac{1}{8}x=8−49=−681
d) \dfrac{-4}{7} \cdot x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1 \dfrac{2}{3}\right)7−4⋅x+57=81:(−132)
\dfrac{-4}{7} x+\dfrac{7}{5}=\dfrac{1}{8} \cdot \dfrac{-3}{5}7−4x+57=81⋅5−3
-\dfrac{4}{7} x=\dfrac{-3}{40}-\dfrac{7}{5} \\ x=\dfrac{-59}{40}: \dfrac{-4}{7}=\dfrac{413}{160}=2 \dfrac{93}{160}−74x=40−3−57x=40−59:7−4=160413=216093
a) A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114.
b) B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152.
a) \mathrm{A}=\left[\dfrac{2}{7}\left(\dfrac{1}{4}-\dfrac{1}{3}\right)\right]:\left[\dfrac{2}{7}\left(\dfrac{1}{3}-\dfrac{2}{5}\right)\right]=\left(\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{1}{3}-\dfrac{2}{5}\right)=1 \dfrac{1}{4}A=[72(41−31)]:[72(31−52)]=(41−31):(31−52)=141.
b) \mathrm{B}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{3}+\dfrac{2}{7}\right)}{\dfrac{1}{5}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)-\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{1}{3}\right)}{\left(\dfrac{1}{5}-\dfrac{1}{3}\right)\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=1 \dfrac{11}{52}B=51(72+31)−31(72+31)43(51−72−31+72)=(51−31)(72+31)43(51−31)=15211
a) A=35.67+37.35−27.35A=35.67+37.35−27.35
=35⋅(67+37−27)=35=35⋅(67+37−27)=35
b) B=(−13⋅25+−29⋅25+25⋅119)⋅52B=(−13⋅25+−29⋅25+25⋅119)⋅52
=(−13−29+119)⋅25⋅52=−13+(119−29)=−12.=(−13−29+119)⋅25⋅52=−13+(119−29)=−12.
c) C=(−45+57)⋅32+(−15+27)⋅32=(−45+57+−15+27)⋅32=((−45+−15)+(57+27))⋅32=0.C=(−45+57)⋅32+(−15+27)⋅32=(−45+57+−15+27)⋅32=((−45+−15)+(57+27))⋅32=0.
d) D=49:(115−1015)+49:(222−522)D=49:(115−1015)+49:(222−522)
=49:−35+49:−322=49⋅−53+49.−223=49:−35+49:−322=49⋅−53+49.−223
=49⋅(−53+−223)=49.−273=−4.
a) \mathrm{A}=\dfrac{3}{5}. \dfrac{6}{7}+\dfrac{3}{7}. \dfrac{3}{5}-\dfrac{2}{7}. \dfrac{3}{5}A=53. 76+73. 53−72. 53
b) \mathrm{B} =\left(-13 \cdot \dfrac{2}{5}+\dfrac{-2}{9} \cdot \dfrac{2}{5}+\dfrac{2}{5} \cdot \dfrac{11}{9}\right) \cdot \dfrac{5}{2} B=(−13⋅52+9−2⋅52+52⋅911)⋅25
=\left(-13-\dfrac{2}{9}+\dfrac{11}{9}\right) \cdot \dfrac{2}{5} \cdot \dfrac{5}{2}=-13+\left(\dfrac{11}{9}-\dfrac{2}{9}\right)=-12 .=(−13−92+911)⋅52⋅25=−13+(911−92)=−12.
c) \mathrm{C} =\left(\dfrac{-4}{5}+\dfrac{5}{7}\right) \cdot \dfrac{3}{2}+\left(\dfrac{-1}{5}+\dfrac{2}{7}\right) \cdot \dfrac{3}{2} =\left(\dfrac{-4}{5}+\dfrac{5}{7}+\dfrac{-1}{5}+\dfrac{2}{7}\right) \cdot \dfrac{3}{2}=\left(\left(\dfrac{-4}{5}+\dfrac{-1}{5}\right)+\left(\dfrac{5}{7}+\dfrac{2}{7}\right)\right) \cdot \dfrac{3}{2}=0 .C=(5−4+75)⋅23+(5−1+72)⋅23=(5−4+75+5−1+72)⋅23=((5−4+5−1)+(75+72))⋅23=0.
d) \mathrm{D}=\dfrac{4}{9}:\left(\dfrac{1}{15}-\dfrac{10}{15}\right)+\dfrac{4}{9}:\left(\dfrac{2}{22}-\dfrac{5}{22}\right)D=94:(151−1510)+94:(222−225)
a) P=23+14+35−745+59+112+135P=23+14+35−745+59+112+135 =(23+14+112)+(59−745)+35+135=1+45+35+135=2135
a) P=23+14+35−745+59+112+135P=23+14+35−745+59+112+135
P =(23+14+112)+(59−745)+35+135
P =1+45+35+135=2135=(23+14+112)+(59−745)+35+135=1+45+35+135=2135.
b)
Q =(5−34+15)−(6+74−85)−(2−54+165)
Q=(5−6−2)+(−34−74+54)+(15−85−165Q=(5−34+15)−(6+74−85)−(2−54+165))
Q = −(3+54+235)Q=(5−6−2)+(−34−74+54)+(15−85−165)=−(3+54+235) =−(3+114+435
Q =−81720=−(3+114+435)=−81720.
a) A=(13+23)−(815+715)+(−17+117)=1−1+1=1A=(13+23)−(815+715)+(−17+117)=1−1+1=1;
b) B=(0.25−114)+(35+25)−18B=(0.25−114)+(35+25)−18
=(14−1−14)+1−18=−18=(14−1−14)+1−18=−18.
\(\Leftrightarrow40+2xy=x\left(x\ne0\right)\)
\(\Leftrightarrow x\left(1-2y\right)=40\Leftrightarrow x=\dfrac{40}{1-2y}\)
Do 2y chẵn => 1-2y lẻ
Để x nguyên thì 1-2y là ước của 40
\(\Rightarrow1-2y=\left\{-5;-1;1;5\right\}\Rightarrow y=\left\{3;1;0;-2\right\}\)
\(\Rightarrow x=\left\{-8;-40;40;8\right\}\)
M N P B A H I
a/
Xét tg MAH và tg BAN có
AM=AB (gt); AN=AH (gt)
\(\widehat{MAH}=\widehat{BAN}\) (góc đối đỉnh)
=> tg MAH = tg BAN (c.g.c)
b/
Ta có tg MAH = tg BAN (cmt) mà \(\Rightarrow\widehat{BNA=}\widehat{MHA}=90^o\)
Xét tg vuông BAN có AB>BN (trong tg vuông cạnh huyền là cạnh có số đo lớn nhất)
Mà AB=AM
=> AM>BN (1)
Xét tg vuông MAH có \(\widehat{MAH}\) là góc nhọn => \(\widehat{MAN}\) là góc tù
Xét tg MAN có MN>AM (trong tg cạnh đối diện với góc tù là cạnh có số đo lớn nhất) (2)
Từ (1) và (2) => MN>BN
Ta có tg MAH = tg BAN (cmt) => \(\widehat{NBM}=\widehat{AMH}\) (3)
Xét tg BMN có
MN>BN (cmt) => \(\widehat{NBM}>\widehat{NMA}\) (trong tg góc đối diện với cạnh có số đo lớn hơn thì lớn hơn góc đối diện với cạnh có số đo nhỏ hơn) (4)
Từ (3) và (4) => \(\widehat{AMH}>\widehat{NMA}\)
c/
Ta có \(\widehat{BNA}=90^o\left(cmt\right)\Rightarrow BN\perp NP\) (1)
Xét tg MNP có \(MH\perp NP\left(gt\right)\) => MH là đường cao
=> MH là đường trung tuyến của tg MNP (trong tg cân đường cao hạ từ đỉnh đồng thời là đường trung tuyến) => HN=HP
Mà IB=IP (gt)
=> IH là đường trung bình của tg BNP => IH//BN (2)
Từ (1) và (2) => \(IH\perp NP\) mà \(MH\perp NP\)
=> M; H; I thảng hàng (từ 1 điểm trên đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho)
Xét tg INP có
\(IH\perp NP\) => IH là đường cao của tg INP
HN=HP (cmt) => IH là đường trung tuyến của tg INP
=> tg INP là tg cân tại I (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân) => IN=IP (cạn bên tg cân)
Mà IP=IB (gt) và IP+IB=BP
=> IN=1/2BP
a) \(P\left(x\right)=x^2+4x+9-2x^3\)\(=-2x^3+x^2+4x+9\)
\(Q\left(x\right)=2x^3-3x+2x^2-9=2x^3+2x^2-3x-9\)
b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(-2x^3+x^2+4x+9\right)+\left(2x^3+2x^2-3x-9\right)\)
\(=\left(-2x^3+2x^3\right)+\left(x^2+2x^2\right)+\left(4x-3x\right)+\left(9-9\right)\)
\(=3x^2+x\)
c) Ta có: \(M\left(x\right)=3x^2+x\)
\(\Rightarrow M\left(-\dfrac{1}{3}\right)=3.\left(-\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)=\dfrac{1}{3}+\left(-\dfrac{1}{3}\right)=0\)
Vậy \(x=-\dfrac{1}{3}\) là nghiệm của đa thức \(M\left(x\right)\)
a) x=7-\dfrac{2}{5}+1,62=8,22x=7−52+1,62=8,22
b) x=4 \dfrac{3}{5}+\dfrac{1}{5}-\dfrac{1}{2}=4 \dfrac{3}{10}x=453+51−21=4103
c) 2 x-x=\dfrac{3}{5}+\dfrac{4}{7}2x−x=53+74
x=\dfrac{41}{35}x=3541
d) x=3 \dfrac{1}{2}-\dfrac{5}{7}+\dfrac{1}{13}-0.25x=321−75+131−0.25
x=2 \dfrac{223}{364}x=2364223
x=7-\dfrac{2}{5}+1,62=8,22x=7−52+1,62=8,22
b) x=4 \dfrac{3}{5}+\dfrac{1}{5}-\dfrac{1}{2}=4 \dfrac{3}{10}x=453+51−21=4103
c) 2 x-x=\dfrac{3}{5}+\dfrac{4}{7}2x−x=53+74
x=\dfrac{41}{35}x=3541
d) x=3 \dfrac{1}{2}-\dfrac{5}{7}+\dfrac{1}{13}-0.25x=321−75+131−0.25
x=2 \dfrac{223}{364}x=2364223