K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

Ta có: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)

\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2-2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\right)\)

\(=\left(\frac{1}{\left(a-b\right)}+\frac{1}{\left(b-c\right)}+\frac{1}{c-a}\right)^2-2\left(\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)

=> \(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2}\)

\(=\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)

Vì a,b,c là các số hữu tỉ => \(\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)là một số hữu tỉ

=> A là một số hữu tỉ

13 tháng 6 2021

\(x+y+z=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\left(đk:x\ge1;y\ge2;z\ge3\right)\)

\(< =>\left(x-1\right)-2\sqrt{x-1}+1+\left(y-2\right)-4\sqrt{y-2}+2+\left(z-3\right)-6\sqrt{z-3}+3=0\)

\(< =>\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-\sqrt{2}\right)^2+\left(\sqrt{z-3}-\sqrt{3}\right)^2=0\)

đến đây dễ rồi ha D:

DD
12 tháng 6 2021

Ta có: \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)

Tương tự ta cũng có: \(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}=\frac{2}{\sqrt{yz}},\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}=\frac{2}{\sqrt{xz}}\).

Cộng lại vế với vế ta được: 

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{zx}}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)

Dấu \(=\)khi \(x=y=z>0\).

12 tháng 6 2021

Đặt \(\sqrt{\frac{1}{x}}=a;\sqrt{\frac{1}{y}}=b;\sqrt{\frac{1}{z}}=c\),bất đẳng thức ban đầu tương đương với

\(a^2+b^2+c^2\ge ab+bc+ca\)\(< =>a^2+b^2+c^2-ab-bc-ca\ge0\)

\(< =>\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(*)

Do bất đẳng thức (*) đúng và các phép biến đổi là tương đương nên ta có điều phải chứng minh

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)\(< =>\)\(x=y=z\)

DD
12 tháng 6 2021

\(\sqrt{10-2\sqrt{6}-2\sqrt{10}+2\sqrt{15}}=\sqrt{2+3+5-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{3}-\sqrt{5}\right)^2}=\left|\sqrt{2}-\sqrt{3}-\sqrt{5}\right|=\sqrt{5}+\sqrt{3}-\sqrt{2}\)

12 tháng 6 2021

Ta có: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)(bđt cosi)

<=> 1 \(\ge\frac{\left(x+y\right)^2}{2}\) <=> \(\left(x+y\right)^2\le2\) <=> \(-\sqrt{2}\le x+y\le\sqrt{2}\)

Dấu "=" xảy ra <=> x  = y

12 tháng 6 2021

\(\left(x-y\right)^2>=0\)

\(x^2+y^2>=2xy\)

\(2\left(x^2+y^2\right)>=\left(x+y\right)^2\)

\(\left(x+y\right)^2< =2\)

\(x+y< =\sqrt{2}\left(1\right)\)

theo tính chất bđt của một số thực bk ta đc

\(-\sqrt{2}< =x+y\left(2\right)\)

từ 1 và 2 <=> ĐPCM

DD
12 tháng 6 2021

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\)

\(\ge\left|2x-1+3-2x\right|=2\)

Dấu \(=\)khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

12 tháng 6 2021

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\)

áp dụng bđt của trị tuyệt đối\(\left|a+b\right|< =\left|a\right|+\left|b\right|\)

\(\left|2x-1\right|+\left|2x-3\right|>=\left|2x-1-2x+3\right|\)

\(=2\)

\(MIN:A=2\)

11 tháng 6 2021

1. ĐKXĐ: x>=1

\(VT=\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}\)

\(=-\sqrt{x-1}\)

VT = VP

=> \(-\sqrt{x-1}=-17\)

<=> x - 1 = 172

<=>x = 172 +1

11 tháng 6 2021

2.\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

<=> \(-\left(x^2-2x\right)+\sqrt{6\left(x^2-2x\right)+7}=0\)'

Đặt t = x2-2x

=>PT trở thành: \(-t+\sqrt{6t+7}=0\)

<=> \(t=\sqrt{6t+7}\)

<=> t2 = 6t + 7

<=> t = 7 hoặc t=-1

<=>x2 - 2x = 7 hoặc x2 - 2x = -1

Giải 2 PT trên kết luận nghiệm

11 tháng 6 2021

\(\hept{\begin{cases}x^2+y^2=1\left(1\right)\\x^2-x=4y^2-2y\left(2\right)\end{cases}}\)

Xét pt (2) <=> x2 - 4y2 - (x - 2y) = 0

<=> (x - 2y)(x + 2y) - (x - 2y) = 0

<=> (x - 2y)(x + 2y - 1) = 0

<=> \(\orbr{\begin{cases}x=2y\\x+2y-1=0\end{cases}}\)

Với x = 2y thay vào pt (1) => (2y)2 + y2 = 1

<=> 5y2 = 1 <=> y = \(\pm\frac{1}{\sqrt{5}}\) => x = \(\pm\frac{2}{\sqrt{5}}\)

Với x + 2y - 1 = 0 => x = 1 - 2y thay vào pt (1) => (1 - 2y)2 + y2 = 1

<=> 5y2 - 4y + 1 = 1

<=> y(5y - 4) = 0

<=> \(\orbr{\begin{cases}y=0\\y=\frac{4}{5}\end{cases}}\) y = 0 => x = 1; y = 4/5 => x = -3/5

Vậy ....

11 tháng 6 2021

ĐK: \(\forall\)\(\in\)R

Ta có: \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

<=> \(\left|x-1\right|+\left|x-3\right|=1\)

Lập bảng xét dấu

x       |               1                    3

x - 1  |  1 - x      0       x - 1      |       x - 1

x - 3  | 3 - x       |        3 - x       0      x - 3

Với x \(\le\)1 => phương trình trở thành: 1 -  x + 3 - x = 1

<=> 2x = 3 <=>> x = 3/2 (ktm)

Với 1 < x < 3 => pt trở thành: x - 1 + 3 - x = 1 <=> 0x = -1 (vô lí)

Với x \(\ge\)3 => pt trở thành: x - 1 + x - 3 = 1 <=> 2x = 5 <=> x = 5/2 (ktm)

=> pt vn