Cho a,b,c là 3 số hữu tỉ khác nhau đôi một. Cm: \(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\left(đk:x\ge1;y\ge2;z\ge3\right)\)
\(< =>\left(x-1\right)-2\sqrt{x-1}+1+\left(y-2\right)-4\sqrt{y-2}+2+\left(z-3\right)-6\sqrt{z-3}+3=0\)
\(< =>\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-\sqrt{2}\right)^2+\left(\sqrt{z-3}-\sqrt{3}\right)^2=0\)
đến đây dễ rồi ha D:
Ta có: \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)
Tương tự ta cũng có: \(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}=\frac{2}{\sqrt{yz}},\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}=\frac{2}{\sqrt{xz}}\).
Cộng lại vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{zx}}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
Dấu \(=\)khi \(x=y=z>0\).
Đặt \(\sqrt{\frac{1}{x}}=a;\sqrt{\frac{1}{y}}=b;\sqrt{\frac{1}{z}}=c\),bất đẳng thức ban đầu tương đương với
\(a^2+b^2+c^2\ge ab+bc+ca\)\(< =>a^2+b^2+c^2-ab-bc-ca\ge0\)
\(< =>\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(*)
Do bất đẳng thức (*) đúng và các phép biến đổi là tương đương nên ta có điều phải chứng minh
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)\(< =>\)\(x=y=z\)
\(\sqrt{10-2\sqrt{6}-2\sqrt{10}+2\sqrt{15}}=\sqrt{2+3+5-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{3}-\sqrt{5}\right)^2}=\left|\sqrt{2}-\sqrt{3}-\sqrt{5}\right|=\sqrt{5}+\sqrt{3}-\sqrt{2}\)
Ta có: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)(bđt cosi)
<=> 1 \(\ge\frac{\left(x+y\right)^2}{2}\) <=> \(\left(x+y\right)^2\le2\) <=> \(-\sqrt{2}\le x+y\le\sqrt{2}\)
Dấu "=" xảy ra <=> x = y
\(\left(x-y\right)^2>=0\)
\(x^2+y^2>=2xy\)
\(2\left(x^2+y^2\right)>=\left(x+y\right)^2\)
\(\left(x+y\right)^2< =2\)
\(x+y< =\sqrt{2}\left(1\right)\)
theo tính chất bđt của một số thực bk ta đc
\(-\sqrt{2}< =x+y\left(2\right)\)
từ 1 và 2 <=> ĐPCM
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|2x-1\right|+\left|2x-3\right|\)
\(=\left|2x-1\right|+\left|3-2x\right|\)
\(\ge\left|2x-1+3-2x\right|=2\)
Dấu \(=\)khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(A=\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\)
áp dụng bđt của trị tuyệt đối\(\left|a+b\right|< =\left|a\right|+\left|b\right|\)
\(\left|2x-1\right|+\left|2x-3\right|>=\left|2x-1-2x+3\right|\)
\(=2\)
\(MIN:A=2\)
1. ĐKXĐ: x>=1
\(VT=\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}\)
\(=-\sqrt{x-1}\)
VT = VP
=> \(-\sqrt{x-1}=-17\)
<=> x - 1 = 172
<=>x = 172 +1
2.\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
<=> \(-\left(x^2-2x\right)+\sqrt{6\left(x^2-2x\right)+7}=0\)'
Đặt t = x2-2x
=>PT trở thành: \(-t+\sqrt{6t+7}=0\)
<=> \(t=\sqrt{6t+7}\)
<=> t2 = 6t + 7
<=> t = 7 hoặc t=-1
<=>x2 - 2x = 7 hoặc x2 - 2x = -1
Giải 2 PT trên kết luận nghiệm
\(\hept{\begin{cases}x^2+y^2=1\left(1\right)\\x^2-x=4y^2-2y\left(2\right)\end{cases}}\)
Xét pt (2) <=> x2 - 4y2 - (x - 2y) = 0
<=> (x - 2y)(x + 2y) - (x - 2y) = 0
<=> (x - 2y)(x + 2y - 1) = 0
<=> \(\orbr{\begin{cases}x=2y\\x+2y-1=0\end{cases}}\)
Với x = 2y thay vào pt (1) => (2y)2 + y2 = 1
<=> 5y2 = 1 <=> y = \(\pm\frac{1}{\sqrt{5}}\) => x = \(\pm\frac{2}{\sqrt{5}}\)
Với x + 2y - 1 = 0 => x = 1 - 2y thay vào pt (1) => (1 - 2y)2 + y2 = 1
<=> 5y2 - 4y + 1 = 1
<=> y(5y - 4) = 0
<=> \(\orbr{\begin{cases}y=0\\y=\frac{4}{5}\end{cases}}\) y = 0 => x = 1; y = 4/5 => x = -3/5
Vậy ....
ĐK: \(\forall\)x \(\in\)R
Ta có: \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
<=> \(\left|x-1\right|+\left|x-3\right|=1\)
Lập bảng xét dấu
x | 1 3
x - 1 | 1 - x 0 x - 1 | x - 1
x - 3 | 3 - x | 3 - x 0 x - 3
Với x \(\le\)1 => phương trình trở thành: 1 - x + 3 - x = 1
<=> 2x = 3 <=>> x = 3/2 (ktm)
Với 1 < x < 3 => pt trở thành: x - 1 + 3 - x = 1 <=> 0x = -1 (vô lí)
Với x \(\ge\)3 => pt trở thành: x - 1 + x - 3 = 1 <=> 2x = 5 <=> x = 5/2 (ktm)
=> pt vn
Ta có: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)
\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2-2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\right)\)
\(=\left(\frac{1}{\left(a-b\right)}+\frac{1}{\left(b-c\right)}+\frac{1}{c-a}\right)^2-2\left(\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)
\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
=> \(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2}\)
\(=\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)
Vì a,b,c là các số hữu tỉ => \(\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)là một số hữu tỉ
=> A là một số hữu tỉ