K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

 Áp suất và thể tích của một lượng khí nhất định tỉ lệ nghịch với nhau khi nhiệt độ không đổi vì các mặt của hình lập phương là bình đẳng nên áp suất tác dụng lên các mặt như nhau

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

\(\Delta t = \frac{s}{v} = \frac{{2l}}{v}\)

a) Lực do thành bình ABCD tác dụng lên một phân tử khí và lực do một phân tử khí tác dụng lên thành bình ABCD:

- Theo định luật III Newton, hai lực này có cùng độ lớn và ngược chiều nhau.

- Lực do thành bình ABCD tác dụng lên một phân tử khí được gọi là lực phản xạ.

- Lực do một phân tử khí tác dụng lên thành bình ABCD được gọi là áp suất.

b) Áp suất do một phân tử khí tác dụng lên thành bình ABCD:

Áp suất được định nghĩa là lực tác dụng lên một đơn vị diện tích.

Lực do một phân tử khí tác dụng lên thành bình ABCD là \(F = \frac{{mv}}{{\Delta t}}\)

Diện tích bị tác dụng là diện tích một cạnh của hình vuông ABCD, A = l2.

Do đó, áp suất do một phân tử khí tác dụng lên thành bình ABCD là:

\(\begin{array}{l}{p_m} = \frac{F}{A} = \frac{{\frac{{mv}}{{\Delta t}}}}{{{l^2}}} = \frac{{mv}}{{2l}}\\pV = nRT = \frac{N}{{{N_A}}}RT\\ \Rightarrow V = \frac{{NRT}}{p}\\ \Rightarrow {p_m} = m\frac{{RT}}{p}.\frac{v}{{2l}} = \frac{m}{V}{v^2}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

Có thể coi chuyển động của phân tử khí trước và sau khi va chạm với thành bình là chuyển động thẳng đều vì:

- Khoảng thời gian va chạm rất ngắn: Khi va chạm với thành bình, phân tử khí chỉ tương tác với thành bình trong một khoảng thời gian rất ngắn, thường là nano giây hoặc pico giây. Trong khoảng thời gian này, lực tác dụng lên phân tử khí rất lớn, nhưng thời gian tác dụng quá ngắn nên không ảnh hưởng đáng kể đến vận tốc của phân tử.

- Chuyển động của phân tử khí giữa hai lần va chạm là chuyển động thẳng đều: Sau khi va chạm với thành bình, phân tử khí sẽ tiếp tục chuyển động theo đường thẳng với vận tốc không đổi cho đến khi va chạm với thành bình tiếp theo hoặc với một phân tử khí khác.

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

- Khối lượng phân tử: Áp suất khí tỉ lệ thuận với khối lượng phân tử. Khi khối lượng phân tử tăng, các phân tử khí sẽ có động năng lớn hơn khi va chạm với thành bình, dẫn đến áp suất lên thành bình tăng.

- Tốc độ chuyển động của phân tử: Áp suất khí tỉ lệ thuận với bình phương tốc độ chuyển động của phân tử. Khi tốc độ chuyển động của phân tử tăng, số lần va chạm và lực va chạm của phân tử với thành bình tăng, dẫn đến áp suất tăng.

- Mật độ phân tử: Áp suất khí tỉ lệ thuận với mật độ phân tử. Khi mật độ phân tử tăng, số lượng phân tử trong một đơn vị thể tích tăng, dẫn đến số lần va chạm với thành bình tăng và áp suất tăng.

- Lực liên kết phân tử: Áp suất khí tỉ lệ nghịch với lực liên kết phân tử. Khi lực liên kết phân tử yếu, các phân tử dễ dàng di chuyển và va chạm với thành bình hơn, dẫn đến áp suất tăng.

Túi khí. Trong ô tô, người ta thường đặt ở hệ thống tay lái một thiết bị nhằm bảo vệ người lái xe khi xe gặp tai nạn, gọi là "túi khí". Túi khí được chế tạo bằng vật liệu co giãn, chịu được áp suất lớn. Trong túi khí thường chứa chất NaN3 khi xe va chạm mạnh vào vật cản thì hệ thống cảm biến của xe sẽ kích thích chất rắn này làm nó phân huy tạo thành Na và khí N2. Khí N2 được tao thành có tác dung...
Đọc tiếp

Túi khí. Trong ô tô, người ta thường đặt ở hệ thống tay lái một thiết bị nhằm bảo vệ người lái xe khi xe gặp tai nạn, gọi là "túi khí". Túi khí được chế tạo bằng vật liệu co giãn, chịu được áp suất lớn. Trong túi khí thường chứa chất NaN3 khi xe va chạm mạnh vào vật cản thì hệ thống cảm biến của xe sẽ kích thích chất rắn này làm nó phân huy tạo thành Na và khí N2. Khí N2 được tao thành có tác dung làm phồng túi lên, giúp người lái xe không bị va chạm trực tiếp vào hệ thống lái (Hình 11.2).

 

a) Viết phương trình phân hủy NaN3.

b) Tính lượng chất khí N2 được giải phóng khi xảy ra phản ứng phân hủy NaN3, biết trong túi chứa 100 g NaN3 và thể tích mol là 24,0 lít /mol.

c) Biết thể tích túi khí khi phồng lên có độ lớn tới 48 lít. Bỏ qua thể tích khí có trong túi trước khi phồng lên và thể tích của Na được tạo thành trong túi do phản ứng phân huỷ. Tính áp suất của khí N2 trong túi khí khi đã phòng lên, biết nhiệt độ là 30 °C.

1
HQ
Hà Quang Minh
Giáo viên
26 tháng 3

a) 2NaN3 → 2Na + 3N2

b) \({n_{Na{N_3}}} = \frac{m}{M} = \frac{{100}}{{65}} = 1,54mol\)

\({n_{{N_2}}} = \frac{3}{2}{n_{Na{N_3}}} = 2,31mol\)

\({V_{{N_2}}} = {n_{{N_2}}}.{V_{{N_2}}} = 2,31.24 = 55,44l\)

c)

T = 30 + 273,15 = 303,15 K

pV = nRT \( \Rightarrow p = \frac{{nRT}}{V} = \frac{{2,31.0,0821.303,15}}{{48}} = 1,27atm\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

\({p_1}{V_1} = {p_2}{V_2} \Rightarrow 1,{02.10^5}V = 0,{3.10^5}V' \Rightarrow V' = 3,4V\)

\({R^3} = \frac{V}{{\frac{4}{3}\pi }} = \frac{{V'}}{{\frac{4}{3}\pi }}.\frac{1}{{3,4}} = 8,82 \Rightarrow R = 2,066m\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

pV = nRT

Quá trình đẳng tích: Thể tích khí không đổi (V = const)

\( \Rightarrow p = \frac{{nRT}}{V} \Rightarrow \frac{p}{T} = const\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

Lý do không gọi phương trình (11.1) là phương trình trạng thái của chất khí:

- Phương trình (11.1): \(\frac{{{p_1}{T_1}}}{{{p_2}{T_2}}} = const\)

- Lý do không gọi phương trình (11.1) là phương trình trạng thái của chất khí:

+ Phương trình (11.1) chỉ áp dụng cho khí lí tưởng.

+ Khí lí tưởng là khí giả định, có các tính chất: Các phân tử khí có kích thước bằng 0. Lực tương tác giữa các phân tử khí bằng 0. Các phân tử khí chuyển động hỗn loạn, va chạm hoàn toàn đàn hồi.

+ Trên thực tế, không có khí nào hoàn toàn là khí lí tưởng.

+ Các khí thực đều có: Kích thước phân tử. Lực tương tác giữa các phân tử.

Do đó, phương trình (11.1) chỉ là phương trình trạng thái gần đúng của chất khí.

HQ
Hà Quang Minh
Giáo viên
26 tháng 3

Lập phương trình chứng tỏ quá trình chuyển trạng thái không phụ thuộc cách chuyển trạng thái:

- Cách biến đổi trạng thái khác trong Hình 11.1:

+ Chọn trạng thái trung gian (1') với áp suất p' và thể tích V₂.

+ Áp dụng định luật Boyle cho quá trình đẳng nhiệt (1) → (1'): p₁V₁ = p'V₂

+ Áp dụng định luật Charles cho quá trình đẳng áp (1') → (2): V₂/T₁ = V₂/T₂

Thay V₂ từ hai phương trình trên vào nhau:

\( \Rightarrow \frac{{{p_1}{V_1}}}{{p'}} = \frac{{{V_2}}}{{{T_2}}} \Rightarrow {p_1}{T_1} = p'{T_2} = const\)

So sánh với phương trình (11.1):

\(\frac{{{p_1}{T_1}}}{{{p_2}{T_2}}} = const\)

Ta thấy hai phương trình có dạng tương tự nhau, chỉ khác nhau ở ký hiệu áp suất (p' thay cho p₂).