K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 5

Gọi số có dạng \(\overline{a_1a_2a_3a_4a_6a_6}\)

Do số chẵn nên \(a_6\) có 5 cách chọn

\(a_5\) có 9 cách chọn (khác \(a_6\))

\(a_4\) có 9 cách chọn (khác \(a_5\))

....

\(a_2\) có 9 cách chọn (khác \(a_3\))

\(a_1\) có 8 cách chọn (khác 0 và \(a_2\))

\(\Rightarrow5.9.9.9.9.8\) số thỏa mãn

NV
4 tháng 5

Chia các số từ 1 đến 100 thành 3 nhóm: 

\(A=\left\{3;6;9;...;99\right\}\) gồm 33 số chia hết cho 3

\(B=\left\{1;4;7;...;100\right\}\) gồm 34 số chia 3 dư 1

\(C=\left\{2;5;8;...;98\right\}\) gồm 33 số chia 3 dư 2

Tổng 3 số chia hết cho 3 khi: cả 3 số cùng số dư khi chia 3 - hay cùng thuộc 1 tập, 3 số thuộc 3 tập khác nhau

\(\Rightarrow C_{33}^3+C_{34}^3+C_{33}^3+C_{33}^1.C_{34}^1.C_{33}^1\) trường hợp thỏa mãn

Xác suất: \(P=\dfrac{C_{33}^3+C_{34}^3+C_{33}^3+C_{33}^1.C_{34}^1.C_{33}^1}{C_{100}^3}=\dfrac{817}{2450}\)

NV
4 tháng 5

Từ đề bài ta suy ra trong 7 chữ số có đúng 1 chữ số có mặt 2 lần, 6 chữ số còn lại có mặt đúng 1 lần

Không gian mẫu: \(7.C_8^2.6!=141120\) số

TH1: chữ số có mặt 2 lần là chữ số lẻ.

Chọn chữ số lẻ lặp 2 lần có: 4 cách

Xếp vị trí cho 4 chữ số lẻ (có 1 số lặp 2 lần): \(C_5^2.3!=60\) cách

5 chữ số lẻ tạo thành 6 khe trống, xếp 3 chữ số chẵn vào 6 khe trống: \(A_6^3\) cách

TH2: chữ số có mặt 2 lần là chữ số chẵn.

Chọn chữ số chẵn có mặt 2 lần: 3 cách

Xếp vị trí cho 4 chữ số lẻ: \(4!\) cách

4 chữ số lẻ tạo thành 5 khe trống, chọn 2 vị trí cho chữ số chẵn lặp 2 lần: \(C_5^2\) cách

Xếp 3 chữ số chẵn còn lại: \(3!\) cách

\(\Rightarrow4.60.A_6^3+3.4!.C_5^2.3!=33120\) số

Xác suất: \(\dfrac{33120}{141120}=\dfrac{23}{98}\)

NV
4 tháng 5

Không gian mẫu: \(9.9.9.9.9=9^5\)

Chọn 3 chữ số từ 9 chữ số {1;2;...;9} có \(C_9^3\) cách

TH1: 1 chữ số lặp 3 lần, 2 chữ số có mặt 1 lần

Chọn 3 vị trí cho chữ số lặp 3 lần: \(C_5^3\) cách

Chọn 2 vị trí còn lại cho 2 chữ số kia: \(2!\) cách

TH2: 2 chữ số lặp 2 lần, 1 chữ số có mặt 1 lần

Chọn vị trí cho các chữ số lặp 2 lần: \(C_5^2.C_3^2\) cách

Còn lại 1 vị trí, có đúng 1 cách chọn cho chữ số còn lại

\(\Rightarrow C_9^3.\left(C_5^3.2!+C_5^3.C_3^2.1\right)\) số thỏa mãn

Xác suất: \(P=\dfrac{C_9^3.\left(C_5^3.2!+C_5^2.C_3^2.1\right)}{9^5}=\dfrac{1400}{19683}\)

NV
3 tháng 5

Các bộ số có tổng bằng 10 là: (1;4;5);(2;3;5);(1;2;3;4)

\(\Rightarrow\) Có \(3!+3!+4!=36\) số có tổng bằng 10

Không gian mẫu: \(A_5^2+A_5^3+A_5^4+A_5^5=320\)

Xác suấtL \(P=\dfrac{36}{320}=\dfrac{9}{80}\)

NV
3 tháng 5

Đề yêu cầu gì em? Hỏi có bao nhiêu số?

3 tháng 5

Gọi số cần tìm có dạng là abcd ( a khác b khác c khác d)

a có 7 cách chọn

b có 6 cách

c có 5 cách 

d có 4 cách 

=> vậy có 7.6.5.4=840 số

số cách chọn là 

12C4 - 5C1.4C1.3C2 - 5C1.4C2.3C1- 5C2.4C1.3C1

NV
3 tháng 5

Thay tọa độ A và B vào \(\Delta\) ta được 2 giá trị trái dấu \(\Rightarrow A;B\) nằm khác phía so với \(\Delta\)

M thuộc \(\Delta\Rightarrow MA+MB\ge AB\)

Dấu "=" xảy ra khi M là giao điểm của \(\Delta\) và đường thẳng AB

\(\overrightarrow{AB}=\left(-1;3\right)\Rightarrow\) phương trình AB có dạng:

\(3\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow3x+y-7=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y+1=0\\3x+y-7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

\(\Rightarrow S=4\)

3 tháng 5

Cái  thì tui chịu