K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

Ta có: \(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right)\div\frac{b}{a-\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}\cdot\frac{a-\sqrt{a^2-b^2}}{b}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)

\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)

\(=\frac{a-b}{\sqrt{a^2-b^2}}=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\sqrt{\frac{a-b}{a+b}}\)

10 tháng 7 2021

Với \(x>0;x\ne4\)

\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\left(\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right):\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right):\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\frac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right).\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)

10 tháng 7 2021

\(A=\left[\frac{2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right]\times\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\times\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\frac{5\sqrt{x}\left(2\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)

DD
10 tháng 7 2021

Đề bạn ghi có vẻ sai. 

Khi cho \(a,b\)dương càng nhỏ thì \(\frac{1}{a}+\frac{1}{b}\)đạt giá trị càng lớn nên \(\frac{1}{a}+\frac{1}{b}\)không có giá trị lớn nhất. 

Sửa đề. Tìm GTNN.

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Dấu \(=\)khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}\\a+b=2\sqrt{2}\end{cases}}\Leftrightarrow a=b=\sqrt{2}\).

10 tháng 7 2021

đăng thể hiện mình giỏi hả nhóc, lô ga rít lớp 9 đã hc à, 

10 tháng 7 2021
hông biết nhét lớp nào nhét tạm 9 =))
10 tháng 7 2021

bài này

nhìn

trông có vẻ hơi khó...

10 tháng 7 2021

bài này hết sức đơn giản, hơn nữa nó cũng có trong sách những viên kim cương của trần phương

10 tháng 7 2021

Trả lời:

\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}\)\(\left(ĐK:\frac{1}{2}\le x\le1\right)\)

\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)

\(=\sqrt{\left(2x-1+1\right)^2}+\sqrt{\left(2x-1-1\right)^2}\)

\(=\sqrt{\left(2x\right)^2}+\sqrt{\left(2x-2\right)^2}\)

\(=\left|2x\right|+\left|2x-2\right|\)

\(=2x+2-2x\)

\(=2\)

DD
10 tháng 7 2021

a) ĐK: \(x\ge\frac{1}{2}\).

\(\sqrt{2x-1}+\sqrt{x+4}=6\)

\(\Leftrightarrow\sqrt{2x-1}-3+\sqrt{x+4}-3=0\)

\(\Leftrightarrow\frac{2x-1-9}{\sqrt{2x-1}+3}+\frac{x+4-9}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{2x-1}+3}+\frac{1}{\sqrt{x+4}+3}\right)=0\)

\(\Leftrightarrow x-5=0\)

\(\Leftrightarrow x=5\).

b) ĐK: \(x\ge\frac{1}{2}\).

 \(\sqrt{x+3}-\sqrt{2x-1}=1\)

\(\Leftrightarrow\sqrt{x+3}-2+1-\sqrt{2x-1}=0\)

\(\Leftrightarrow\frac{x+3-4}{\sqrt{x+3}+2}+\frac{1-\left(2x-1\right)}{1+\sqrt{2x-1}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x+3}+2}-\frac{2}{1+\sqrt{2x-1}}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\frac{1}{\sqrt{x+3}+2}=\frac{2}{1+\sqrt{2x-1}}\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow2\sqrt{x+3}+4=1+\sqrt{2x-1}\)

Có \(4>1,2\sqrt{x+3}=\sqrt{4x+12}>\sqrt{2x-1}\)

do đó phương trình \(\left(1\right)\)vô nghiệm. 

10 tháng 7 2021

a) ĐK : x >= 1/2

\(\Leftrightarrow\left(\sqrt{2x-1}-3\right)+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\frac{2x-1-9}{\sqrt{2x-1}+3}+\frac{x+4-9}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{2x-1}+3}+\frac{1}{\sqrt{x+4}+3}\right)=0\)(1)

Dễ thấy với x >= 1/2 thì \(\frac{2}{\sqrt{2x-1}+3}+\frac{1}{\sqrt{x+4}+3}>0\)

nên (1) <=> x - 5 = 0 <=> x = 5 (tm)

Vậy phương trình có nghiệm x = 5