K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=9+16=25\Rightarrow BC=5\)cm 

*Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{12}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm 

-> CH = \(5-\frac{9}{5}=\frac{25-9}{5}=\frac{16}{5}\)cm 

27 tháng 7 2021

b, Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH=9.16=144\Rightarrow AH=12\)cm 

-> CH + BH = BC = 16 + 9 = 25

* Áp dụng hệ thức : \(AB^2=BH.BC=9.25=225\Rightarrow AB=15\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=400\Rightarrow AC=20\)cm 

26 tháng 7 2021

ĐK: Với mọi x thuộc R

Ta có: \(\sqrt{4x^2+4x+4}=5x\) (x\(\ge\)0)

<=> 4x2 + 4x + 4 = 25x2

<=> 21x2 - 4x - 4 = 0

\(\Delta'\)= (-2)2 + 4.21 = 88 > 0

=> pt có 2 nghiệm pb

x1 = \(\frac{2+2\sqrt{22}}{21}\)(tm); x2 = \(\frac{2-2\sqrt{22}}{21}\)(ktm)

Vậy S = {\(\frac{2+2\sqrt{22}}{21}\)