Không sử dụng bất cứ định lý / nguyên lý nào cả, tìm số dư của \(2013^{2016}\)cho \(2016\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
a^2 + b^2 = 2ab
=> a^2 + b^2 - 2ab = 0
(a-b)^2 = 0
=> a=b
tính \(\frac{2005a}{ab+2005a+2005}\)\(+\frac{b}{bc+b+2005}\)\(+\frac{c}{ac+c+1}\)
biết \(a.b.c=2005\)


\(\left(15^2-1\right)\left(15^2+1\right)-5^4.3^4\)
= \(\left[\left(15^2\right)^2-1\right]-15^4\)
= \(\left(15^4-1\right)-15^4\)
= \(15^4-1-15^4\)
= \(-1\)

a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

Ta có: (x+y)^2 - (x-y)^2 = [(x+y)-(x-y)].[(x+y)+(x-y)]
= (x+y-x+y)(x+y+x-y)
= 2y.2x
= 4xy
Ta không thể áp dụng định lý Fermat nhỏ ngay được vì 2013 va 2016 không là hai số nguyên tố cùng nhau. Cô gợi ý một cách để có thể áp dụng định lý Fermat nhỏ:
\(2013^{2016}=\left(-3\right)^{2016}\left(mod2016\right)=3^{2016}\left(mod2016\right)\)
\(2016=2^5.3^2.7\).
Gọi x là số dư của \(3^{2016}\)khi chia cho 2016. Ta suy ra:
.\(\hept{\begin{cases}3^{2016}=x\left(mod2^5\right)\\3^{2016}=x\left(mod3^2\right)\\3^{2016}=x\left(mod7\right)\end{cases}}\)
Nhận xét: \(3^8=1\left(mod2^5\right)\),\(3^6=1\left(mod7\right)\), \(3^{2016}=0\left(mod3^2\right)\). Do 2016 đều chia hết cho 8,6 nên:
\(\hept{\begin{cases}3^{2016}=1\left(mod2^5\right)\\3^{2016}=1\left(mod7\right)\\3^{2016}=0\left(mod3^2\right)\end{cases}}\)
Như vậy:
\(\hept{\begin{cases}x=1\left(mod2^5\right)\\x=1\left(mod7\right)\\x=0\left(mod3^2\right)\end{cases}}\)
Từ đó suy ra : \(x-1=BC\left(2^5,7\right)\).và x chia hết cho 9, x < 2016.
Từ đó ta tìm được x = 225.
Đây là trường hợp đặc biệt nên ta áp dụng cách tìm bội chung của lớp 6 nếu giả sử rơi vào trường hợp sau:
\(\hept{\begin{cases}x=5\left(mod2^5\right)\\x=6\left(mod7\right)\\x=2\left(mod3^2\right)\end{cases}}\)thì các bạn có thể áp dụng định lý số dư Trung Hoa.
áp dụng "=] chả vại còn gì, trong trường hợp quá bí" ta có:
số chia là 2016
Vì số dư nhỏ hơn số chia =2015
Xét 2015 trường hợp ta có:....