K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

j mk vs

13 tháng 10 2018

-Gọi AC cắt BD tại O. Ta có MN=OB=OD(=1/2.BD).
-Ta có: tam giác BMD vuông tại M có O là trung điểm của BD nên MO=1/2.BD. 
tam giác BND vuông tại N có O là trung điểm của BD nên NO=1/2.BD.
Suy ra: MO=ON=MN=BO=OD. => tam giác MON đều => góc MON=60 độ. 
-Mà góc MOD=góc NOD=1/2. góc MON=30 độ và OM=OD => góc MDO=75 độ. => góc ADC=góc ABC=2.góc MDO= 150 độ. 
=> góc BAD=góc BCD= 30 độ.
Vậy góc A và góc C của hình thoi ABCD bằng 30 độ; góc B và góc D của hình thoi bằng 150 độ. 

13 tháng 11 2016

a= 4 nha bạn

13 tháng 11 2016

Đề đúng không thế bạn. 2x hay 2x2 thế

13 tháng 11 2016

Ta có: 12x2 - 26x - 16 = 2(6x2 - 13x - 8)

= 2[(6x2 + 3x) + (- 16x - 8)]

= 2(2x + 1)(3x - 8)

Từ đó ta có

\(\frac{12x^2-26x-16}{4x^2+4x+1}=\frac{2\left(2x+1\right)\left(3x-8\right)}{\left(2x+1\right)^2}=\frac{2\left(3x-8\right)}{2x+1}\)

13 tháng 11 2016

Câu 3:
Bậc của đơn thức thương trong phép chia  2x4y2z : ( -6x3yz  )

là :

bậc 2

đ/s : bậc 2

13 tháng 11 2016

Hệ số của đơn thức thương trong phép chia -3x3yz2 : 5x2yz
(Nhập kết quả dưới dạng số thập phân gọn nhất)

là : 

- 0,6

đ/s : - 0,6

Mình vừa làm xong

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0