K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

A B C H

BC=a; AC=b; AB=c

Từ C dựng đường thẳng vuông góc với AB tại H

\(\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}.\)

\(\Rightarrow a\left(a+b-c\right)+c\left(a+b-c\right)=b\left(a+b-c\right)+bc\)

\(\Rightarrow a^2+ab-ac+ac+bc-c^2=ab+b^2-bc+bc\)

\(\Rightarrow a^2-b^2-c^2+bc=0\) (*)

Ta có \(AB=c=AH+BH\Rightarrow c^2=AH^2+BH^2+2.AH.BH\) (**)

Xét tg vuông ACH có

\(AH^2=AC^2-CH^2=b^2-CH^2\)

Xét tg vuông BCH có

\(BH^2=BC^2-CH^2=a^2-CH^2\)

Thay giá trị của \(AH^2\) và  \(BH^2\) vào (**) ta có

\(c^2=b^2-CH^2+a^2-CH^2+2.AH.BH=b^2+a^2-2.CH^2+2.AH.BH\) Thay vào (*) ta có

\(a^2-b^2-\left(b^2+a^2-2.CH^2+2.AH.BH\right)+bc=0\)

\(\Rightarrow-2.b^2+2.CH^2-2.AH.BH+bc=0\)

\(\Rightarrow-2\left(b^2-CH^2\right)-2.AH.BH+bc=0\)

\(\Rightarrow-2.AH^2-2.AH.BH+bc=0\)

\(\Rightarrow bc=2.AH\left(AH+BH\right)=2.AH.AB=2.AH.c\Rightarrow b=AC=2.AH\)

Xét tg vuông ACH có

\(\cos A=\frac{AH}{AC}=\frac{AH}{2.AH}=\frac{1}{2}\Rightarrow\widehat{A}=60^o\left(dpcm\right)\)

NM
11 tháng 1 2021

ta có \(a^2=\frac{b^3+c^3-a^3}{b+c-a}\Leftrightarrow a^2\left(b+c\right)-a^3=b^3+c^3-a^3\Leftrightarrow a^2=\frac{b^3+c^3}{b+3}\)

hay \(a^2=b^2-bc+c^2\)

mà theo địnkh lý cosin trong tam giác ta có \(a^2=b^2-2.bc.cos\left(A\right)+c^2\Rightarrow cos\left(A\right)=\frac{1}{2}\Rightarrow A=60^0\)

ta có \(a=2b.cos\left(C\right)=2b.\frac{a^2+b^2-c^2}{2ab}\Leftrightarrow a^2=a^2+b^2-c^2\Leftrightarrow b=c\)

vì vậy ABC cân tại A mà lại có A=60 độ nên ABC đều

2 tháng 1 2022

\(\hept{\begin{cases}xy\left(4xy+y+4\right)=y^2\left(2y+5\right)-1\\2xy\left(x-2y\right)+x-14y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2xy+1\right)^2+y^2\left(x-2y\right)=5y^2\left(1\right)\\\left(x-2y\right)\left(2xy+1\right)=12y\left(2\right)\end{cases}}\)

Xét: y = 0 không là nghiệm của hệ phương trình

Xét: \(y\ne0\) chia hai vế phương trình (1) cho \(y^2\); chia hai vế phương trình (2) cho y được

\(\hept{\begin{cases}\left(2x+\frac{1}{y}\right)^2+\left(x-2y\right)=5\\\left(x-2y\right)\left(2x+\frac{1}{y}\right)=12\end{cases}}\)

Đặt \(\hept{\begin{cases}a=2x+\frac{1}{y}\\b=x-2y\end{cases}}\) có hệ phương trình \(\Leftrightarrow\hept{\begin{cases}a^2+b=5\\ab=12\end{cases}\Rightarrow\hept{\begin{cases}a=-3\\b=-4\end{cases}}}\) hay \(\hept{\begin{cases}2x+\frac{1}{y}=-3\\x-2y=-4\end{cases}}\)

Giải hệ phương trình (tự làm nốt) được nghiệm \(\left(-2;1\right)\) và \(\left(-\frac{7}{2};\frac{1}{4}\right)\)

2 tháng 1 2022

Điều kiện: \(\hept{\begin{cases}xy\ge0\\x,y\ge-1\end{cases}}\) khi đó hệ phương trình tương đương với

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\3+\sqrt{xy}+2\sqrt{xy+4+\sqrt{xy}}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\4\left(xy+4+\sqrt{xy}\right)=\left(11-\sqrt{xy}\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\3xy+26\sqrt{xy}-105=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\\sqrt{xy}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=6\\\sqrt{xy}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy hệ phương trình có nghiệm duy nhất \(\left(x,y\right)=\left(3,3\right)\)