Cho 1001 số nguyên dương khác nhau nhỏ hơn 2000 . Chứng minh rằng ta có thể chọn ra 3 số mà 1 số bằng tổng 2 số còn lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số máy mỗi đội lần lượt có là: a,b,c ( máy ) ( a,c,b \(\in\)N* , b > 1 )
Theo bài ra , ta có : b - c = 1
Vì số máy tỉ lệ nghịch với số ngày nên: 3a = 5b= 6c
\(\Rightarrow\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}=\frac{b-c}{\frac{1}{5}-\frac{1}{6}}=\frac{1}{\frac{1}{30}}=30\)
\(\Rightarrow\hept{\begin{cases}a=30.\frac{1}{3}=10\\b=30.\frac{1}{5}=6\\c=30.\frac{1}{6}=5\end{cases}}\)
Vậy sô máy của 3 đội lần lượt là 10 ; 6 ; 5 máy.
gọi số máy cày của 3 đội lần lướt là a , b , c.
theo bài ra,ta có : b-c=1
vì số máy cày tỉ lệ nghịch với số ngày hoàn thành công việc nên ,ta có:
a/1/3=b/1/5=c/1/6
áp dụng tính chất dãy tỉ số bằng nhau , ta có
a/1/3=b/1/5=c/1/6=b-c/1/5-1/6=1/1/30
=> a=30 nhân\(\frac{1}{3}\)= 10
b=30 nhân \(\frac{1}{5}\)=6
c=30 nhân \(\frac{1}{6}\)=5
vậy đọi 1 có 10 máy
đội 2 có 6 máy
đọi 3 có 5 máy
Lấy M1. M2 đổi xứng với M như hình vẽ, khi đó đường thẳng M1M2 cắt Ox, Oy lần lượt tại hai điểm A,B.
ta chứng minh khi đó MAB có chu vi nhỏ nhất. Thật vậy lấy hai điểm A',B' bất kỳ trên Ox, Oy
ta có :
\(A'M+B'M+A'B'=A'M_1+B'M_2+A'B'\ge M_1M_2=MA+MB+AB\)
dấu bằng xảy ra khi M1,M2 ,A',B ' thẳng hàng như hình vẽ
Gọi P và Q thứ tự là điểm đối xứng của M qua Oy và Ox. Nối PQ cắt Ox ở A, Oy ở B. Ta chứng minh A,B là các vị trí cần tìm.
do có 1 số kí hiệu mình không biết viết trên olm nên mình phải làm thế này bnaj thông cảm nhé
@minhnguvn
Xin lỗi mấy bạn vì làm câu trả lời thêm dài,nhưng chủ nhân của câu hỏi này đã nói là bạn ấy đăng lên chơi thôi,vì không biết nên mới đăng dã lại bạn ấy nói rằng bài này của 2015-2016 ,đề cũ rồi bạn ấy chỉ thắc mắc đáp án chứ không có ý gì đâu ,mấy bạn đừng nói tục,nói không biết,hay hiểu lầm bạn ấy khi chưa biết lí do nha,tại bạn ấy nhắn ở dưới mà mấy bạn trả lời nhiều quá bị trôi dễ không để ý nên không biết.Đừng báo cáo câu trả lời của mình vì mình chỉ muốn mấy bạn không bị hiểu lầm. I'm Sorry.
Câu 1:
a, \(\frac{1}{3}xy^2\)( -2x3yz2 ) Bậc của đơn thức là 6
b\(\frac{1}{2}x^2y\left(x^3y\right)\left(-2x^2\right)^2\)Bậc của đơn thức là 4
Câu 2:
a, Dấu hiệu điều tra là Điểm kiểm tra toán học kỳ I của học sinh lớp 7A. Số các giá trị: N = 36
b Bảng tần số :
Giá trị (x) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Giá trị (x) | 1 | 2 | 5 | 5 | 7 | 9 | 4 | 2 | 1 |
Số trung bình cộng của Điểm kiểm tra toán học kỳ I của học sinh lớp 7A là :
\(\overline{x}=\frac{2.1+3.2+4.5+5.5+6.7+7.9+8.4+9.3+10.1}{36}\).
\(\overline{x}=5,6\)
Mik ko bt đúng hay sai nữa :Đ
Gọi số m vải loại II mua được là x(x>0)
-theo bài ra ta có-;51/x=85/100
=> x=51.100/85=60(thỏa mãn điều kiện)
Đ/S;60 m -LÀM NHƯ LÒ ÔNG TUẤN KIỂU J CŨNG ĐÚNG-?
Hình em tự vẽ nhé.
Từ B ta kẻ BI vuông góc với ME, căt ME tại I. Dễ dàng chứng minh được tam giác BHI bằng tam giác EIH nên BH = EI.
Mà EI = ME+MI. Vậy để chứng minh: MD+ME=BH ta chỉ cần chứng minh MI=MD.
Do BỊ vuông góc EI, EI vuông góc với AC nên BỊ song song AC.
Vậy: \(\widehat{IBC}=\widehat{ACB}\)(hai góc so le trong).
DO tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}.\)Suy ra: \(\widehat{IBC}=\widehat{ABC}.\)
Xét tam giác BMD và tam giác BMI:
Có BM chung .
\(\widehat{IBC}=\widehat{ABC}.\)
\(\widehat{D}=\widehat{I}=90^o.\)
Vậy: \(\Delta BMD=\Delta BMI\)(ch. gn).
Suy ra: IM=MD. Vậy ta có điều phải chứng minh.
25 người ăn trong 1 ngày được số gạo là :
30 : 3 = 10 ( kg )
một người ăn trong 1 ngày là :
10 : 25 = 0,4( kg )
18 người ăn trong 1 ngày là :
0,4 x 18 = 7,2 ( kg )
18 người ăn trong 5 ngày là :
7,2 x 5 = 36 ( kg )
đáp số : 36 kg
Bạn có thể vẽ ra tập rồi trả lời câu hỏi mới dễ bạn à.
Còn trên đây mk ko biết vẽ hình.
Hoặc bạn có thể vào học 24 hoặc câu hỏi tương tự tham khảo.
Chúc bạn học tốt !
thay a = x cho dễ nhé
Ta có:
4a/2 = 12b/2 = xc/2 = S (S là diện tích tam giác)
=> a = 2 ; b = 6 ; c = 2S /x
Do x - y < z < x + y (bất đẳng thức trong tam giác)
=> S/2 - S/6 < 2S/x < S/2 + S/6
=> 2S /6 < 2S /x < 2S/3 . Mà x thuộc Z
=> x = {4 ,5}
cách 2:
gọi a,b,c là độ dại 3 cạnh,ha,hb,hc là 3 đường cao tương ứng
ha = 4 và hb = 12,ta tìm hc
+ ta có
S = 1/2*a.ha
=>a = 2S/ha
tương tự
b = 2S/hb
và
c=2S/hc
+ do ABC la 1 tam giác nên
* a + b > c
=> 2S/ha + 2S/hb > 2S/hc
<> 1/hc < 1/4 + 1/12 = 1/3
=> hc > 3
* b + c > a
=> 1/12 + 1/hc > 1/4
<>1/hc > 1/6
=> hc < 6
do hc nguyên nên hc = 4 hoạc hc = 5
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
gọi \(a_1,a_2...a_{1001}\) là 1001 số nguyên dương đã cho xếp từ bé đến lớn
nghĩa là \(a_{1001}\) là số nguyên dương lớn nhất.
giả sử không thể chọn ra 3 số mà tổng hai số bất kỳ luôn khác số còn lại
khi đó ta có :
\(a_1,a_2,...a_{1001},a_{1001}-a_1;a_{1001}-a_2;....;a_{1001}-a_{1000}\) là 2001 số nguyên dương phân biệt nhỏ hơn 2000
điều này là vô lý vì chỉ có 2000 số nguyên dương bé hơn 2000
vậy giả sử là sai và ta có điều phải chứng minh