Tính gt biểu thức:
M=\(4x^2+9y^2-12xy\) với \(2x+3y=2\) và \(x.y=12\)
N=\(x^4+y^4\) với \(x-y=7\) và \(x.y=60\) và \(x>y>0\)
P=\(a^4+b^4+c^4\) với \(a+b+c=0\) và \(a^2+b^2+c^2=1\)
Help meeeeeeeeeeeee
Thank nhìu:3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) Gọi t (h) là thời gian từ khi xuất phát đến khi cả 2 xe gặp nhau
Quãng đường xe đi từ A đến B đi được là: 36.t (km)
Quãng đường xe đi từ B về A đi được là: 54.t (km)
Từ đó ta có phương trình sau:
\(36t+54t=150\)
\(\Leftrightarrow90t=150\)
\(\Rightarrow t=\frac{5}{3}\left(h\right)\approx1,7\left(h\right)\)
Vậy khoảng lúc: 6 + 1,7 = 7,7 = 7 giờ 42 phút thì 2 xe gặp nhau
b) Đổi 30 phút = 0,5 giờ
Vì ô tô thứ 2 xuất phát sau ô tô thứ nhất nên khi ô tô thứ 2 khởi hành thì khoảng cách giữa chúng là:
\(150-0,5\cdot36=132\left(km\right)\)
Gọi m là thời gian từ khi xe thứ 2 khởi hành đến khi cả 2 xe gặp nhau, khi đó:
Quãng đường sau khi xe thứ 2 xuất phát của xe 1 đi được là: 36.m (km)
Quãng đường xe thứ 2 đi được đến khi gặp xe thứ nhất là: 54.m (km)
Từ đó ta có phương trình sau:
\(36.m+54.m=132\)
\(\Leftrightarrow90.m=132\)
\(\Rightarrow m=\frac{22}{15}\left(h\right)\approx1,5\left(h\right)\)
Vậy khoảng lúc: 6 + 0,5 + 1,5 = 8 giờ thì 2 xe gặp nhau
Đề như thế này đúng không bạn ? :)
(x + 5)(4 - 3x) - (3x + 2)2 + (2x + 1)3 = (2x - 1)(4x2 + 2x + 1)
=> x(4 - 3x) + 5(4 - 3x) - [(3x)2 + 2.3x.2 + 22 ] + [(2x)3 + 3.(2x)2.1 + 3.2x.12 + 13 ] = (2x - 1)[(2x)2 + 2.x.1 + 12 ]
=> 4x - 3x2 + 20 - 15x - (9x2 + 12x + 4) + (8x3 + 12x2 + 6x + 1) = (2x)3 - 13
=> 4x - 3x2 + 20 - 15x - 9x2 - 12x - 4 + 8x3 + 12x2 + 6x + 1 = 8x3 - 1
=> 4x - 3x2 + 20 - 15x - 9x2 - 12x - 4 + 8x3 + 12x2 + 6x + 1 - 8x3 + 1 = 0
=> (4x - 15x - 12x + 6x) + (-3x2 - 9x2 + 12x2) + (20 - 4 + 1 + 1) + (8x3 - 8x3) = 0
=> -17x + 18 = 0
=> -17x = -18
=> 17x = 18
=> x = 18/17
Vậy x = 18/17
PT đa thức thành nhân tử ?
a) \(x\left(x+2\right)+x\left(x-5\right)-5\left(x+2\right)\)
\(=\left[x\left(x+2\right)-5\left(x+2\right)\right]+x\left(x-5\right)\)
\(=\left(x-5\right)\left(x+2\right)+x\left(x-5\right)\)
\(=\left(x-5\right)\left(2x+2\right)\)
\(=2\left(x+1\right)\left(x-5\right)\)
b) \(x^2y^2+y^3+zx^2+yz\)
\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)
\(=\left(y^2+z\right)\left(x^2+y\right)\)
c) \(1-2x+2yz+x^2-y^2-z^2\)
\(=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-y+z-1\right)\left(x+y-z-1\right)\)
d) \(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2+a^2xy+b^2xy\)
\(=\left(abx^2+b^2xy\right)+\left(aby^2+a^2xy\right)\)
\(=bx\left(ax+by\right)+ay\left(by+ax\right)\)
\(=\left(ay+bx\right)\left(ax+by\right)\)
1. BĐT tương đương với \(6\left(a^2+b^2\right)-2ab+8-4\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\ge0\)
\(\Leftrightarrow\left[a^2-4a\sqrt{b^2+1}+4\left(b^2+1\right)\right]+\left[b^2-4b\sqrt{a^2+1}+4\left(a^2+1\right)\right]\)\(+\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-2\sqrt{b^2+1}\right)^2+\left(b-2\sqrt{a^2+1}\right)^2+\left(a-b\right)^2\ge0\)(đúng)
=> Đẳng thức không xảy ra
2. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
\(\Leftrightarrow a^4+b^4+c^2+1\ge2a^2b^2-2a^2+2ac+2a\)
\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^2-2ac+a^2\right)+\left(a^2-2a+1\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c-a\right)^2+\left(a-1\right)^2\ge0\)
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
Bài 1:
Ta có:
\(P=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)
\(P=\left[\left(a+1\right)\left(a+4\right)\right]\cdot\left[\left(a+2\right)\left(a+3\right)\right]+1\)
\(P=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
Đặt \(x=a^2+5a+5\) , khi đó:
\(P=\left(a-1\right)\left(a+1\right)+1\)
\(P=a^2-1+1\)
\(P=a^2=\left(x^2-5x+5\right)^2\)
Mà \(a\inℤ\Rightarrow x^2-5x+5\inℤ\)
=> P là số chính phương
\(\left(xy+yz+zx\right)^2+\left(x^2-yz\right)^2+\left(y^2-zx\right)^2+\left(z^2-xy\right)^2=x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)+x^4-2x^2yz+y^2z^2+y^4-2y^2zx+z^2x^2+z^4-2z^2xy+x^2y^2=x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)=\left(x^2+y^2+z^2\right)^2=100^2=10000\)
a) x( x + 2 )( x + 3 )( x + 5 ) + 5
= [ x( x + 5 ) ][ ( x + 2 )( x + 3 ) ] + 5
= ( x2 + 5x )( x2 + 5x + 6 ) + 5 (1)
Đặt t = x2 + 5x
(1) <=> t( t + 6 ) + 5
= t2 + 6t + 5
= t2 + t + 5t + 5
= t( t + 1 ) + 5( t + 1 )
= ( t + 1 )( t + 5 )
= ( x2 + 5x + 1 )( x2 + 5x + 5 )
b) 6x2 - 5xy + y2 = 6x2 - 3xy - 2xy + y2 = 3x( 2x - y ) - y( 2x - y ) = ( 2x - y )( 3x - y )
a,\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+5\)
\(=x\left(x+5\right)\left(x+2\right)\left(x+3\right)+5\)
\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+5\)(*)
Đặt \(a=x^2+5x\)ta đc:
(*)=\(a\left(a+6\right)+5\)
\(=a^2+6a+5\)
\(=a^2+a+5a+5\)
\(=a\left(a+1\right)+5\left(a+1\right)\)
\(=\left(a+5\right)\left(a+1\right)\)
\(=\left(x^2+5x+5\right)\left(x^2+5x+1\right)\)
b,\(6x^2-3xy-2xy+y^2\)
\(=3x\left(2x-y\right)-y\left(2x-y\right)\)
\(=\left(3x-y\right)\left(2x-y\right)\)
\(M=4x^2+9y^2-12xy\)
\(M=\left(4x^2+12xy+9y^2\right)-24xy\)
\(M=\left(2x+3y\right)^2-24xy\)
\(M=2^2-288=-284\)
Ta có: \(x-y=7\Rightarrow x=y+7\)
Thay vào: \(y\left(y+7\right)=60\)
\(\Leftrightarrow y^2+7y-60=0\)
\(\Leftrightarrow\left(y-5\right)\left(y+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-12\left(ktm\right)\end{cases}}\Rightarrow y=5\Rightarrow x=12\)
Từ đó:
\(N=5^4+12^4=625+20736=21361\)