K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi đánh giá năng lực

Mn giúp mik câu 45 với ạ

Bài tập Tất cả

1
6 tháng 1 2021
Chọn D nhé!

Bài tập Tất cả

DD
10 tháng 12 2020

Câu 1: Không gian mẫu là số cách lấy được \(2\)viên bi trong \(11\)viên. \(n\left(\Omega\right)=C^2_{11}\)

\(A\)là biến cố lấy được hai viên bi đỏ. \(n\left(A\right)=C^2_5\)

Xác suất cần tìm là: \(\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{2}{11}\).

Câu 2: Tương tự câu 1. 

Xác suất là \(\frac{C^1_{15}.C^2_{85}}{C^3_{100}}=\frac{51}{154}\)

16 tháng 10 2020

Bài làm của ông a :))

đk: \(-\sqrt[4]{2}\le x\le\sqrt[4]{2}\)

Nếu x = 0 thay vào ta được PT không có nghiệm

Nếu x khác 0 thì ta có: \(x^2\cdot\sqrt[4]{2-x^4}=x^4-x^3+1\)

\(\Leftrightarrow x^2\cdot\sqrt[4]{2-x^4}+x^3=x^4+1\)

\(\Leftrightarrow\sqrt[4]{2-x^4}+x=x^2+\frac{1}{x^2}\)

Đến đây ta sẽ sử dụng 2 BĐT quá là quen thuộc, Cauchy và Bunyakovsky!

Áp dụng Cauchy ta được: \(x^2+\frac{1}{x^2}\ge2\) 

Dấu "=" xảy ra khi: \(x^2=\frac{1}{x^2}\Leftrightarrow x^4=1\Rightarrow x^2=1\)

Mặt khác, áp dụng Bunyakovsky ta có:

\(\left(\sqrt[4]{2-x^4}\right)^2\le\left(1^2+1^2\right)\left(\sqrt{2-x^4}+x^2\right)\)

\(\Rightarrow\left(\sqrt{2-x^4}+x^2\right)\le4\left(\sqrt{2-x^4}+x^2\right)^2\le4\cdot2\cdot\left(2-x^4+x^2\right)=8\cdot2=16\)

\(\Rightarrow\sqrt[4]{2-x^4}+x\le\sqrt[4]{16}=2\)

Dấu "=" xảy ra khi: x = 1

Vậy x = 1

17 tháng 10 2020

            \(x^2.\sqrt[4]{2-x^4}=x^4-x^3+1\left(1\right)\)

Ta có x = 0 không là \(n_0\) của (1)

Với \(x\ne0\), Ta có 

\(\left(1\right)\Leftrightarrow\sqrt[4]{2-x^4}=x^2-x+\frac{1}{x^2}\)

\(\Leftrightarrow x+\sqrt[4]{2-x^4}=x^2+\frac{1}{x^2}\left(2\right)\)

\(VP_{\left(2\right)}=x^2+\frac{1}{x^2}\ge2\)(cô si )

\(VT_{\left(2\right)}=x+\sqrt[4]{2-x^4}\le\sqrt{\left(1+1\right)\left(x^2+\sqrt{2-x^4}\right)}\le\sqrt{2\sqrt{\left(1+1\right)\left(x^2+2-x^4\right)}}\)\(=\sqrt{2.\sqrt{2.2}}=2\)

Do đó \(\left(2\right)\Leftrightarrow\hept{\begin{cases}VP_{\left(2\right)}=2\\VT_{\left(2\right)}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=\sqrt[4]{2-x^4}\\x^2=\sqrt{2-x^4}\end{cases}}\Leftrightarrow x=1\)

Kết luận Vậy phương trình (1) có \(n_0\)duy nhất \(x=1\)

7 tháng 6 2021

Câu 1: Điều kiện \(D=\left(-\infty;0\right)U\left(1;+\infty\right)\)

\(y'=\frac{\sqrt{x^2-x}-x.\frac{2x-1}{2\sqrt{x^2-x}}}{x^2-x}=\frac{-x}{2\left(x^2-x\right)\sqrt{x^2-x}}\)

Ta thấy \(y'< 0\) trên \(\left(1;+\infty\right)\), suy ra hàm số nghịch biến trên \(\left(1;+\infty\right)\).

Câu 2: 

\(y'=1+\frac{2x}{\sqrt{2x^2+1}}=\frac{2x+\sqrt{2x^2+1}}{\sqrt{2x^2+1}}\)

Xét bất phương trình:

\(2x+\sqrt{2x^2+1}< 0\)

\(\Leftrightarrow\sqrt{2x^2+1}< -2x\)

\(\Leftrightarrow\hept{\begin{cases}x< 0\\2x^2+1< 4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< \frac{-\sqrt{2}}{2}\left(h\right)x>\frac{\sqrt{2}}{2}\end{cases}}\Leftrightarrow x< \frac{-\sqrt{2}}{2}\)

Vậy hàm số nghịch biến trên \(\left(-\infty;\frac{-\sqrt{2}}{2}\right)\).